

TOGA D&C Pty Ltd

Surry Hills Shopping Village

Preliminary Contamination and Geotechnical Site Assessment

18 June 2015

Experience comes to life when it is powered by expertise This page has been left intentionally blank

Surry Hills Shopping Village

Prepared for

Rob Thomas TOGA D&C Pty Ltd Level 5 45 Jones Street Ultimo NSW 2007

Prepared by Coffey Geotechnics Pty Ltd Level 19, Tower B, 799 Pacific Highway Chatswood NSW 2067 Australia t: +61 2 9406 1039 f: +61 2 9406 1002 ABN: 93 056 929 483

18 June 2015

Document authorisation

Our ref: GEOTLCOV25397AA-AF

For and on behalf of Coffey

Mark George Associate Engineering Geologist

Quality information

Revision history

Revision	Description	Date	Author	Reviewer	Signatory
Issue	Issue 1	18/06/2015	MG/DG	SG	MG

Distribution

Report Status	No. of copies	Format	Distributed to	Date
V1 Issue	1	PDF	Rob Thomas – TOGA	18/06/2015

Executive summary of environmental findings

TOGA D&C Pty Ltd (TOGA) has submitted an Expression of Interest for the purchase of the Surry Hills Shopping Village, situated on Cleveland and Baptist Street, Redfern. TOGA is considering redevelopment of the site for mixed use, commercial and residential purposes. TOGA requested that Coffey Geotechnics Pty Ltd (Coffey) perform a limited environmental site assessment of the shopping centre site to supplement advice provided in an earlier desktop study (reference GEOTLCOV25397AA-AB dated 24 April 2015).

The work was commissioned by Mr Rob Thomas of TOGA in response to our proposal reference GEOTLCOV25397AA-AE dated 11 May 2015. Discussions with Mr Thomas indicate that the redevelopment may involve the construction of up to 200 apartments above a three level basement.

The objective of the assessment is to provide TOGA with advice on the contamination risks and opportunities related to the site.

Based on the limited results of this investigation, the soil contamination recorded in soil, groundwater or soil vapour does not indicate the presence of impacts that would preclude the redevelopment of the site for residential use, particularly if a significant quantity of fill material and shallow groundwater that is showing localised impact arising from dry cleaning chemical is removed during the redevelopment of the site.

Asbestos was identified at one location. However, based on findings at other similar sites in Sydney, it is considered that it is possible that a significant portion of fill material may be impacted with asbestos, whether in the form of fragments or fibres.

Chlorinated solvents were identified at concentrations above the drinking water criteria near the suspected source of chlorinated solvents plume in the vicinity of the dry cleaner. While the on-site, dissolved phase plume of chlorinated solvents may be managed as part of the redevelopment of the site, an off-site plume, should it exist, may require specific assessment and remediation including triggering the notification requirements under Section 60 of the Contaminated Land Management Act. While there isn't sufficient data to assess whether a part of the plume is present off site, based on the available information, there is a low likelihood of significant off-site chlorinated solvent contamination in groundwater.

Based on the limited results of this investigation, the groundwater beneath the site may require pH adjustment before discharge to sewer.

This report must be read in conjunction with the attached Important Information about your Coffey Report.

Table of contents

1.	Introd	luction		1
2.	The s	site		1
	2.1.	Locatio	n and characteristics	2
	2.2.	Ground	l information	4
		2.2.1.	Published information	4
		2.2.2.	Coffey archive information	4
	2.3.	Site his	story review	5
		2.3.1.	Aerial photography	5
		2.3.2.	Contaminated land public register	5
3.	Site g	geotechr	nical model	8
	3.1.	Soil str	atigraphy	8
	3.2.	Ground	dwater	8
4.	Geote	echnical	discussion and recommendations	9
	4.1.	Suitabi	lity for development	9
	4.2.	Potenti	al impacts of excavation	9
	4.3.	Excava	ition support	9
		4.3.1.	Shoring	9
		4.3.2.	Rock face support	.10
		4.3.3.	Excavation induced ground movements	.10
	4.4.	Buildin	g foundations	.10
	4.5.	Ground	Jwater	.11
5.	Conta	aminatio	n assessment	1
	5.1.	Objecti	ve and scope of investigation to date	1
	5.2.	History	of Potentially Contaminating Activities	5
	5.3.	Assess	ment of areas of environmental concern	6
	5.4.	Progra	m of field investigation	1
	5.6.	Assess	ment criteria	2
		5.6.1.	Contamination assessment criteria	2
		5.6.2.	Waste classification criteria	2
		5.6.3.	Groundwater	2
	5.7.	Field o	bservations and analytical results	3
		5.7.1.	Soil field observations	3
		5.7.2.	Soil analytical results	3
		5.7.3.	Groundwater	4
		5.7.4.	Soil Vapour	4

	5.8.	Discus	sion	5
		5.8.1.	General condition of the site	5
		5.8.2.	Chlorinated solvents	5
		5.8.3.	Asbestos	5
		5.8.4.	Waste classification	6
	5.9.	Conclu	sions	6
	5.10.	Further	site investigations	7
6.	Limita	ations		7

Important information about your Coffey Report

Tables

- Table 1 Soil Analytical Results Land Use Assessment Criteria
- Table 2 QA/QC Soil Duplicate and Triplicate Samples Analytical Results
- Table 3 Soil Analytical Results Waste Classification Criteria
- Table 4 Soil Leachability Analytical Results Waste Classification Criteria
- Table 5 Soil Analytical Results UCL95% Waste Classification Criteria
- Table 6 Groundwater Gauging and Water Quality Parameters
- Table 7 Groundwater Analytical Results Beneficial Uses Criteria
- Table 8 QA/QC Groundwater Analytical Results
- Table 9 Groundwater Analytical Results Sydney Water Trade Waste Agreement Limits
- Table 10 Soil Vapour Analytical Results Beneficial Uses Criteria
- Table 11 QA/QC Rinsates and Trip Blanks Water Analytical Results

Figures

- Figure 1 Site Location Plan
- Figure 2 Site Layout and Sampling Locations Plan
- Figure 3 Fill Material Thickness / Depth to Bedrock
- Figure 4 Soil Analytical Results (May 2015)
- Figure 5 Depth to Groundwater (May 2015)
- Figure 6 Groundwater and Soil Vapour Exceedances (May 2015)

Appendix

- Appendix A Borelogs
- Appendix B Dial Before You Dig Search
- Appendix C Laboratory Analytical Results
- Appendix D QA/QC Assessment
- Appendix E Soil and Groundwater Beneficial Use Criteria
- Appendix F Procedures for Soil, Groundwater and Soil Vapour Sampling
- Appendix G Field Calibration Documentation

1. Introduction

TOGA D&C Pty Ltd (TOGA) has submitted an Expression of Interest for the purchase of the Surry Hills Shopping Village, situated on Cleveland and Baptist Street, Redfern, and is considering redevelopment of the site for mixed use, commercial and residential purposes involving the construction of up to 200 apartments above a three level basement.

To this end TOGA requested Coffey Geotechnics Pty Ltd (Coffey) to perform a desktop geotechnical and environmental site assessment. This desktop assessment was prepared and submitted in our report reference GEOTLCOV25397AA-AB dated 24 April 2015.

Subsequently TOGA extended the commission to expand upon the environmental site assessment advice provided in the desktop study. The scope of work for this limited additional environmental assessment was presented in Coffey reference GEOTLCOV25397AA-AC dated 4 May 2015. The objective of the additional limited environmental site assessment was to provide TOGA with advice on the contamination risks and opportunities related to the site to assist its purchase decision.

This report presents the updated environmental assessment with the previous geotechnical desk study (updated to consider information from the environmental boreholes) to provide the current information in a single document. The additional scope of work carried out for the limited environmental assessment is explained in Section 5.1.

1.1. Objective and scope of investigation to date

The objective of the this preliminary study is to assess the presence of land contamination at the site, the potential impact on the proposed redevelopment of the site and comment on the likely general suitability of the site for future use.

To achieve the project objectives, Coffey carried out the following scope of work:

- Project planning and inception, including review of previous reports prepared for the site to assess potential areas of environmental concern (AEC) and chemicals of potential concern (COPC);
- Preparation of a limited Sampling, Analysis and Quality Plan (SAQP) using information gathered as part of the data review;
- Drilling 10 soil bores to depths between 0.5m and 6.0 m below ground surface (bgs);
- Collection of representative soil samples from each borehole location at regular intervals;
- Laboratory analysis of soil samples for grain size distribution and a suite of chemicals including heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn), total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), phenols, organochlorine pesticides (OCP), polychlorinated biphenyls (PCBs), total organic carbon (TOC), asbestos, electro-conductivity (EC), pH and cation exchange capacity (CEC); and
- Interpretation of data and preparation of this ESA report that summarises the results of the investigation works, discusses the potential impacts on the proposed redevelopment of the site and assesses the general suitability of the.

This report has been prepared in general accordance with industry and NSW EPA endorsed guidelines, particularly the *Guidelines for Consultants Reporting on Contaminated Sites* (NSW OEH, 2011).

2. The site

2.1. Location and characteristics

The site currently comprises three lots, occupied by a multi tenanted commercial shopping centre. The shopping centre consists of low rise, single storey structures, situated at the intersection of Cleveland Street and Baptist Street, Redfern. A site location plan is presented as Figure 1.

The shopping centre buildings occupy approximately 60% of the site, with external car parking occupying the remaining, southern section of the site. The site is bounded on three sides by roads, Cleveland Street to the north, Baptist Street to the east and Marriott Street to the west. Heritage terrace houses and gardens form the southern boundary. Vegetation across the site is limited to mature trees around the perimeter, with a number of young trees within the car park area.

The following table provides a summary of the land uses surrounding the site.

Table 1: Surrounding Land Uses

Direction	Land Uses
North	 Immediately to the north of the site is Cleveland Street. Land to the north, beyond Cleveland Street, comprises various commercial buildings and a church.
East	 Immediately to the east of the site is Baptist Street Land to the east, beyond Baptist Street, comprises various commercial buildings, NSW Mounted Police Stables and a BP Service Station approximately 50m from the site.
South	Residential buildings.
West	 Marriot Street forms the western boundary of the site. Land to the west, beyond Marriot Street, comprises residential properties, reserves and a car wash (on Cleveland Street).

Topographically the site sits on the eastern edge of a low ridgeline that runs from Darlinghurst in the north to Waterloo in the south. The area surrounding the site typically falls gently to the south and east, however, the site walkover indicated that the site itself falls from a high point at the Cleveland Street/Baptist Street intersection (at approximately RL35 m AHD) to a low point at the south western extent, approximately 6m lower. The shopping centre tenants' car park occupies the lowest point of the site, which is used as an on-site stormwater detention area (Photograph 1).

Photograph 1 – On-site detention area

Both Baptist Street and the parallel Marriott Street to the west, fall to the south at about 3% gradient, with Marriott Street about 2m lower. Ground levels within the shopping centre are generally flat, with ramps up to the Cleveland Street and Baptist Street exits. The Australia Post building at the south of the shopping centre is raised from the surrounding car parking, with the floor level about 1.5m higher than the Baptists Street level. The car parking area falls to the south west, with minor 'steps' in levels, with slight ramps and small retaining walls. Examples of the levels across the car park are shown in the Photographs 2 and 3.

Photograph 2 – Low height retaining structures

Photograph 3 – Ramp to the loading dock area

The site topography suggests that it has been subject to previous re-profiling/filling. It is unclear whether this work was performed prior to construction of the former industrial factories, or levelling took place prior to construction of the current shopping centre. However, based on the floor level of the former NSW Bank building (on the corner of Cleveland Street and Baptist Street) it would appear that the re-profiling was performed specifically for the construction of the shopping centre.

2.2. Ground information

2.2.1. Published information

The Sydney 1:100,000 Geological Sheet indicates that the site is underlain by Quaternary age "marine" sand of the Botany Basin sediments. The map indicates that the site sits close to the boundary of the lower Ashfield Shale and Hawkesbury Sandstone bedrock below the sand, indicating that bedrock conditions may comprise residual clay soils and weathered shale/sandstone bedrock.

The Botany Bay Acid Sulfate Soil Risk Map places the site is in an area of "No Known Occurrence", indicating that acid sulfate soils are not known or expected to occur in these environments.

2.2.2. Coffey archive information

Review of Coffey archives identified other local investigations including:

- Geotechnical and contamination investigations for the CBD and South East Light Rail (boreholes along Devonshire Street)
- Environmental site assessment of 426 Cleveland Street (opposite the site)
- Geotechnical investigations (boreholes to 9m) for a residential development at Chalmers Street (500m to the west)
- Geotechnical investigations (boreholes to 7m) for a commercial development at Walker Street (300m north west)

Ground conditions for these projects were typically dune sands overlying sandstone and shale bedrock consistent with the published information. Boreholes drilled along Devonshire Street at a similar distance from the boundary of the sand deposits indicate sandstone bedrock.

Investigations to the west of the site indicates shale bedrock below sand deposits, with evidence suggesting the base of the shale dipping relatively steeply to the west, suggesting a thinning of the shale capping to the sandstone towards the east.

2.3. Site history review

2.3.1. Aerial photography

Selected historical aerial photographs of the site were reviewed for the period of 1943 to 2014. Findings are summarised in Table 2.

Table 2: Summary of historic land uses interpreted from aerial photographs

Year	Site Description	Surrounding Area Description
1943	The site appears covered in buildings/structures used for industrial/commercial purposes. Background research has found that the building owned by Wunderlich was constructed after 1919 and was used as a factory for architectural elements. A 1930 construction journal stated that asbestos cement sheeting was manufactured within the factory.	The site is bound by Cleveland St to the north. Commercial and residential property lies beyond Cleveland St. Baptist St and commercial buildings exist to the east of the site. Residential properties surround the site to the south and west. Marriot St is the western boundary of the site.
1951	No significant changes noted since the previous photograph.	No significant changes are noted since the previous photograph.
1961	No significant changes are noted since the previous photograph.	No significant changes are noted since the previous photograph.
1970	No significant changes are noted since the previous photograph.	No significant changes are noted since the previous photograph.
1978	No significant changes are noted since the previous photograph.	No significant changes are noted since the previous photograph.
1986	The photograph shows significant site changes. The southern section has been cleared for a carpark. There is a large retail/commercial building in the north of the site (the current shopping centre). A historic building remains in the north-east corner of the site.	No significant changes are noted since the previous photograph.
	Background research undertaken stated that in 1979 the building was sold and set for demolition.	
1994	No significant changes noted since previous photograph.	No significant changes are noted since the previous photograph.
2000	The 2000 Google Earth image displayed no significant changes from the previous photograph.	No significant changes are noted since the previous photograph.
2007	No significant changes are noted since the previous photograph.	No significant changes are noted since the previous photograph.
2014	No significant changes are noted since the previous photograph.	No significant changes are noted since the previous photograph.

2.3.2. Contaminated land public register

Coffey undertook a search of the NSW EPA online contaminated land register on 11 April 2015. The search did not identify notices issued by the NSW EPA under the Contaminated Land Management Act (1997) pertaining to the site, or properties immediately surrounding the site.

The search identified a notice relating to properties within the surrounding suburb of Camperdown. As the site is located 1km or more from the site, it is assessed that the contamination issues relating to these properties are unlikely to affect the site.

2.3.3. History of Potentially Contaminating Activities

The results of this initial site contamination assessment indicate that the site was historically owned by Wunderlich, responsible for manufacturing architectural elements for many of Sydney's iconic structures. Details from a 1930 Construction and Real Estate Journal revealed that the Wunderlich factory specialised in asbestos cement sheets and slates manufacturing. The exact details of the manufacturing period of time remain unknown, however, desktop records suggest that factory/building was constructed before 1919 and demolished around 1979. Following demolition, the Surry Hills Shopping Village and carpark was constructed, generally as it stands today. Due to the historical activities carried out within the Wunderlich factory and the year in which demolition was undertaken, there is a high risk that ACM containing asbestos remain on-site in the form of factory wastes or demolition materials in fill. Given the reprofiling undertaken on-site during the construction of the shopping centre it is likely that contaminated material resulting from demolition remains on site.

Based on observations made during a site walkover, review of available records, discussions with dry cleaning staff, and the proposed development, the following AEC's were identified:

- The presence asbestos within fill materials on site which has derived from former manufacturing of asbestos products, or the remnants of these structures following demolition.
- Fill material of unknown quality of origin.
- Dry cleaners
- Nearby BP Service Station
- Transformers / Switchroom

Assessment of the suitability of the site for the proposed redevelopment of the site has been undertaken with reference to the decision making process presented in Figure 1 in Section 3 of *Managing Land Contamination, Planning Guidelines: SEPP 55 – Remediation of Land* (DUAP, 1998), which has been reproduced below.

2.4. Assessment of areas of environmental concern

Based on the site history review and the site walkover, a number of potential Areas of Environmental Concern (AECs) and associated Contaminants of Potential Concern (COPC) have been identified and are summarised in the following table.

Table 3: Areas of Environmental Concern

PotentialContaminatingContaminatingContaminantsActivity/ Area ofof PotentialEnvironmentalConcernConcernConcern	Likelihood of Impact^	Comments
--	--------------------------	----------

Potential Contaminating Activity/ Area of Environmental Concern	Contaminants of Potential Concern	Likelihood of Impact^	Comments
Potential remnants of activities and hazardous building material from historic buildings on site	Asbestos	High	The historical factory specialised in the manufacture of asbestos cement sheets and slates. This information was provided in 1930 and no details has been obtained regarding when this activity ceased. Asbestos containing materials (ACM) were likely to be present within the factory during the demolition and remained on site. Desktop research has revealed that the structure was demolished around 1979. The site walkover suggested that the site was cut and filled with the likely presence of demolition/ remnant material left on site containing ACM.
Potential contamination in fill	TPH, BTEX, PAH, Metals*, PCB, OCP and asbestos.	Moderate	The source and quality of fill material present on site is unknown however historical demolition material (as highlighted above) was possible used in the fill material.
BP Service Station (50m to the east of site)	TPH, BTEX, PAH, lead	Moderate	The service station was located in the same topographical plane as the site. However due to the age of the service station (observed to be relatively new) and nature of the geology, a moderate risk is presented to the site.
Dry Cleaning	VOCs	High to moderate	A brief discussion with a worker of the dry cleaners found it had been operation since 2000. All dry cleaning was carried out on-site.
Transformers and Switchroom	TPH, PCB, Asbestos	Moderate	Due to the age and nature of the transformers and switchboards there is a possibility that asbestos and PCB oils are present. The presence of oil was not observed during the site walkover.

Based on the findings of this desktop research, it was considered that there is moderate tohigh likelihood for ground contamination being present at the site. On this basis, it was recommended that a detailed site investigation is undertaken to assess potential ground contamination issues associated with the AECs identified. The objective of this investigation and associated land contamination assessment was to characterise and assess the extent and significance of contamination present (if any) in the context of the proposed development.

3. Site geotechnical model

3.1. Soil stratigraphy

The site geotechnical model presented in Table 4 was developed from the desk study information and has been updated to reflect the information from the borehole drilling for the subsequent environmental assessment (which revealed conditions generally consistent with the original ground model). Significant obstructions were encountered in the fill.

Table 4: Geotechnical Model

Geotechnical Unit	Description	Indicative thickness
Fill	Where re-profiling of the site has occurred, fill is likely to consist of sand, with possible demolition rubble, such as bricks, tiles, sheeting. Where fill has been imported, we cannot make an assumption of its properties	Likely to be between 0.5m and 3m thick
Dune sands	Sand, fine grained, loose to medium dense with some clay bands	Depending on the level of re- profiling, the sand is likely to be found to depths of between 4m and 5m.
Residual soil	Sandy clay, low plasticity, stiff to hard	Found at 2.5
Bedrock	Sandstone, fine to medium grained, likely contains interbeds of mudstone, grading from highly weathered to fresh, typically low to high strength, increasing with depth	To depths greater than the proposed basement level

Desktop investigations within the area suggested groundwater levels of between 2m and 6m below ground level, close to Chalmers Street and Elizabeth Street, generally at the sand/bedrock interface. These measurements, however, were taken at sites with shale bedrock at depth, on the western side of the local ridgeline.

The dune sands underlying the site are likely to be hydraulically connected to the Botany Basin sediments to the east, towards South Dowling Street and Moore Park. Groundwater measurements within the Botany Basin sediments at Moore Park, indicate generally static levels of approximately RL31m AHD. It is considered that groundwater levels across the site may be found at a similar level.

3.2. Groundwater

The boreholes and wells installed for the additional environmental investigation provided some site specific groundwater information.

Static water levels at the site ranged from 2.29 m below top of casing (mBTOC) in well MW4 to 2.897 mBTOC in MW2 when measured between 15 May and 1 June 2015. Because the wells were not surveyed as part of this investigation, the groundwater direction and gradient can only be approximately inferred. Based on the range of approximate elevations at the site (approximately 38 m AHD along Cleveland Street to the north, and 34 m AHD to the south), the groundwater is inferred to flow in a general southerly direction.

All four wells purged dry after one well volume, suggesting a slow recharge in the aquifer.

A review of the Botany groundwater management zones indicates that the site is located in Zone 2, where a ban applies on groundwater extraction for domestic use. While dewatering of the formation is not to be conducted for domestic use, it will require obtaining a licence from NSW Water Authority to extract groundwater.

4. Geotechnical discussion and recommendations

This discussion and recommendations in this section were previously presented in our earlier desktop report.

4.1. Suitability for development

Based on our site observations, preliminary geotechnical model, and experience on similar projects, the proposed development, including three level basement development is considered feasible from a geotechnical perspective. Provided appropriate additional site investigation, design assessments, and construction monitoring normally associated with this type of development are carried out, the risks to adjacent structures and services should be able to be managed.

4.2. Potential impacts of excavation

The site is adjacent to sensitive receptors, such as heritage houses to the west and south, and the RMS operated Cleveland Street. The location, footing type, layout and founding depth for adjacent structures and the nature and depth of sensitive buried services beyond the site boundaries should be determined before excavation commences. Where adjacent structures and services are located within the zone of influence of the excavation, the ground may experience horizontal and vertical movements from excavation induced ground movements. Potential impacts on sensitive structures and services should be assessed as part of excavation retention design.

Based on a proposed three level basement, potentially extending to 9m below ground level, we expect that the excavation will be through fill, dune sands and sandstone bedrock, with a minor amount of residual soil. Conventional excavation methods and plant should be able to be used to excavate the soil and very low to low strength rock materials. Use of high powered excavation plant fitted with rippers and rock breakers will be required for the excavations into higher strength rock, which is likely towards the lower basement levels. Rotary rock grinder or rock saw attachments to a hydraulic excavator may be required to avoid both over break and excessive vibrations below shoring and adjacent to vibration sensitive structures.

Appropriate investigations, designs, and monitoring will be required to assess the foundations of existing adjacent structures and services and to protect them from adverse impacts from ground movements and vibrations. Conventional retention systems and excavation methods should be able to be adopted to mitigate the risks to adjacent structures and services.

We recommend that prior to the commencement of the bulk excavation works dilapidation surveys of the adjacent structures be carried out to provide a baseline for excavation monitoring and management works.

Where dewatering, during construction or long term, is required an assessment of the likely impacts to neighbouring structures and infrastructure will be required. Settlements due to dewatering within the area are well documented, such as the impacts of the Eastern Distributor tunnel construction, and therefore should be considered in basement design. The magnitude of dewatering induced settlements will be dependent on a number of factors, including cut off wall design, construction and bedrock conditions.

4.3. Excavation support

4.3.1. Shoring

Shoring will be required to support the excavations in soil and some weathered rock. For this project shoring systems such as secant pile or diaphragm walls considered. Alternative methods such as sheet piling may be considered if at sufficient distance from the site boundaries. Anchors to walls should be inclined downwards to anchor into competent rock, where rock levels are within tolerable distance from ground surface. The use of temporary anchors under the adjoining streets and

properties will require owner's permission. Permanent anchors are not recommended to extend outside of the site boundary, due to maintenance requirements and possible damage.

Anchors extending below Cleveland Street will require RMS permission, which may require significant time to attain. Alternative methods of retention, such as cantilevered structures or internal propping are possible, however, these methods are typically more expensive to construct or present greater logistical issues during construction.

Retaining walls/pile elements will have to be specifically sized and designed to support any adjacent structures or surcharge loads that lie within the excavation zone of influence which can be estimated by drawing a line at approximately 2H:1V from the base of the excavation to the ground surface behind the excavated face.

4.3.2. Rock face support

Vertical excavations in more competent sandstone bedrock should be practicable. Adverse jointing or weathering may be encountered and support in the form of shotcreting and pattern rock bolting may be required.

4.3.3. Excavation induced ground movements

The proposed excavation will induce ground movements, both laterally and vertically. Within a retained soil profile, the magnitude of adjacent ground movements will depend on the ground conditions, design lateral pressure, shoring system adopted, construction sequence and workmanship. Documented data has shown that for well-constructed shoring, vertical and lateral movements may be in the order of 0.1% to 0.3% of the retained thickness of a medium dense sand soil.

It is typical that, where excavations are proposed adjacent to RMS roads, numerical analysis is required as part of Development Application conditions, to assess likely ground movements when designing the shoring system.

With no current details available on the size or position of the basement, it is not possible to assess the likely impact of excavation on the surround buildings. However, where it is important to limit adjacent ground movements due to the presence of nearby structures supported on high level footings, the use of a relatively stiff shoring with bracing and/or tie-back anchors designed to resist higher than active earth pressures may be required. We suggest that such cases be specifically addressed during detailed design when details of adjacent footings and loadings are known.

Based on experience of deep basements in Sydney, typical lateral movements due to excavations in rock are of the order of 0.5 mm to 2 mm per metre of excavation, depending on rock quality and presence of bedding seams. Measurements of lateral ground movements due to stress relief have been made at distances of up to 1.5 to 2 times the basement depth from the edge of excavations. Stress relief ground movements are unlikely to be significant at distances greater than twice the excavation depth. However, these approximations will be affected by local geological structures and should only be used as a rough guide. The potentially damaging effects of stress redistribution on structures in the vicinity of the proposed basement excavation should be assessed as part of the detailed design process.

4.4. Building foundations

Basement excavation of up to 9m may be necessary for a three level basement. At this level, we expect to encounter sandstone bedrock across much of the site. Where sandstone bedrock is present at footing level a minimum allowable bearing pressure of 1,000 kPa is likely, however, with an appropriate, investigation including cored boreholes, higher design parameters are likely to be able to be assigned to the bedrock.

Reduced allowable bearing capacity would be assigned for the dune sand deposits, and may be suitable for lightly loaded structures, however, for the size and nature of the development proposed, it is recommended that footings be extended to bedrock.

4.5. Groundwater

The construction of a basement at the site will be highly dependent on groundwater conditions, particularly static levels and permeability of soils and bedrock. Groundwater inflows into basement excavations will be dependent on a number of factors, including groundwater level, size, location and depth of excavation, wall depth and permeability, defects in the rock mass (e.g. fractures) intersected by the excavation. These variables are not known in sufficient detail to allow estimation of groundwater inflows.

Where a hydrostatic cut off wall is constructed, such as a secant pile wall, diaphragm wall or similar, socketed into relatively low permeability sandstone bedrock, a drained basement may be possible. Such a basement would require discharge of seepage from a below floor drainage and sump, potentially to sewer or stormwater.

As part of further site investigations groundwater inflow assessment and quality/chemistry testing will be necessary to obtain regulatory approvals for discharge to sewer or stormwater.

The options of disposal of groundwater to stormwater or sewer are discussed in Section 5.4.3, based on the results of the groundwater monitoring conducted as part of this investigation.

5. Contamination assessment

This section updates the assessment previous presented in our desktop report.

5.1. Program of field investigation

The program of field investigation undertaken at the site is detailed in Table 5 below.

Table 5: Programme of fieldworks undertaken

Date	Field works
13 May 2015	Drilling of boreholes BH01 to BH05 using a drill rig and of boreholes BH06 to BH08 by hand auger.
	Installation and development of three monitoring wells at locations BH01/MW1, BH02/MW2 and BH05/MW3.
15 May 2015	Groundwater monitoring and sampling of wells MW1 to MW3.
	Hand auger of location BH09 and sub-slab soil vapour sampling of locations SV1 and SV2.
28 May 2015	Drilling of borehole BH10 using a drill rig and installation and development of well BH10/MW4.
1 June 2015	Groundwater monitoring and sampling of well MW4.

The field works were conducted according to Coffey SOPs. The details of the procedures are presented in Appendix F.

5.3. Assessment criteria

5.3.1. Contamination assessment criteria

The soil, groundwater and soil vapour investigation levels (SILs) presented in the following reference are the primary criteria used in NSW when setting acceptance criteria for chemical contaminants in soil:

- Schedule B(1) 'Guideline on the Investigation Levels for Soil and Groundwater' of the National Environment Protection (Assessment of Site Contamination) Measure as amended (NEPC, 2013).
- CRC Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report No. 10: Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (2011).

Future use of the site for residential purposes has been considered for the purpose of this investigation. The details of the soil, groundwater and soil vapour assessment criteria considered for potential future residential use are presented in Appendix E.

5.3.2. Waste classification criteria

Additional assessment criteria were considered with respect to the management of the fill material during the proposed redevelopment of the site.

Soil - Waste classification criteria

Soil results were assessed against waste classification criteria provided by NSW EPA.

• NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste, www.epa.nsw.gov.au

Soil results were also assessed against Kurnell Landfill Environmental Protection Licence Other Limits criteria for resource recovery waste storage.

5.3.3. Groundwater

Groundwater - Disposal to storm water network

Disposal to storm water was assessed in a first instance against the NEPM (2013) marine water ecosystem protection criteria, as the marine environment is the most likely receptor of the storm water in the area of the site.

Groundwater - Disposal to sewer

Because the site may require dewatering during the construction works, groundwater at the site was assessed against criteria provided by Sydney Water for Trade Waste.

• Sydney Water (2014) Industrial Customers, Acceptance standards and charging rates for 2014-15. www.sydneywater.com.au

When contacted by phone on 4 June 2015, Sydney Water indicated that the sewer treatment plant for the Surry Hills area discharges its effluent into the marine environment, and that the limit for the TDS is 10,000 mg/L.

5.4. Field observations and analytical results

Borelogs are included in Appendix A. Laboratory reports and chain of custody documentation are included in Appendix C. The QA/QC assessment of the investigation and analytical results is detailed in Appendix D.

5.4.1. Soil field observations

Based on observations made during the drilling of the soil bores, at least two types of fill material are present at the site:

- Fill #1: silty sand to sand, coarse grained, brown, with traces of gravel
- Fill #2: silty sand, medium to coarse grained, dark grey

Both types of fill materials were present at all locations drilled to the natural soil. Their vertical distribution was with Fill #1 generally present at depths to 1-1.5 mbgs, and Fill #2 present at depths from 1.5 to the natural soil (at depths of 2-3 mbgs).

5.4.2. Soil analytical results

Soil analytical results are presented in Tables 1 to 5 attached.

Petroleum hydrocarbons (long fraction hydrocarbons >C16-C34, polycyclic aromatics such as benzo(a)pyrene) and metals were detected in the majority of samples of the fill material analysed, indicating their widespread distribution across the site.

Asbestos was present at location BH07 (at depths of 0.2 and 0.5 mbgs). Asbestos in both samples was described as "chrysotile, amosite and crocidolite asbestos detected in weathered fibre cement fragments and in the form of loose fibre bundles". No respirable asbestos fibres were detected. Asbestos was not detected in any of the 15 other samples collected at 9 other locations and analysed.

Other COPC (volatile hydrocarbons such as BTEX and light chain petroleum hydrocarbons, polychlorinated biphenyls (PCB), phenols, organochlorine pesticide (OCP)) were not detected in samples analysed.

Chlorinated hydrocarbons were not detected in the soil sample analysed at location BH10 at a depth of 3 mbgs, in the vicinity of the dry cleaner.

Environmental criteria

Petroleum hydrocarbons (TRH >C16-C34 and benzo(a)pyrene) and a number of metals (copper, lead, nickel, zinc) were detected in fill samples at concentrations greater than the ecological screening levels (ESL) or ecological investigation levels (EIL).

Health criteria

One exceedance of the health investigation levels (HIL) was recorded, for carcinogenic PAHs at location BH04 (at a depth of 0.5mbgs).

Waste classification

Soil analytical results assessed against waste classification criteria are presented in Tables 2 and 3 attached.

Based on CT1 and CT2 (no leaching) waste classification criteria, the concentrations of lead or benzo(a)pyrene exceed the CT2 criteria for restricted solid waste in three samples, and the CT1 criteria for general solid waste in nine samples analysed.

Based on SCC1&TCLP1 and SCC2&TCLP2 (leaching) waste classification criteria, the concentrations of lead and benzo(a)pyrene were below the SCC1&TCLP1 criteria for general solid waste in all samples analysed.

In samples BH07 (at 0.2 and 0.5 mbgs), the detection of asbestos classified the soil in those samples as special waste (asbestos).

Based on Kurnell Landfill EPL, two samples exceeded the limits for zinc and total PAHs for resource recovery waste storage. It is noted that these two samples exceeded CT2 criteria for restricted solid waste.

The results of the UCL 95% of lead and benzo(a)pyrene calculated on a selection of seven samples (including two samples exceeding CT1 criteria) were below the CT1 and Kurnell Landfill other limits for resource recovery waste storage (see results in Table 5 attached).

5.4.3. Groundwater

Groundwater quality parameters recorded in the field and analytical results are presented in Tables 5 and 6.

The pH measured in the field indicated slightly acidic conditions in the groundwater beneath the site. The salinity of the groundwater was moderate, as indicated by the concentrations of total dissolved solids estimated from the field-measured electro-conductivity.

Petroleum hydrocarbons were detected at concentrations below the nominated criteria in samples MW3 and MW4.

Concentrations of metals (arsenic, copper, lead, nickel and/or zinc) were measured in groundwater at concentrations exceeding the nominated criteria.

Chlorinated solvents (tetrachloroethylene, trichloroethylene and cis-dichloroethylene) were measured at concentrations below the nominated criteria in sample MW4, near the dry cleaner.

Tetrachloroethylene was detected at a concentration greater than the laboratory level of reporting (>LOR) in samples MW1 and MW3 located respectively 75 m and 130 m to the south (and inferred to be down-gradient) of the dry cleaner.

Assessment of disposal of groundwater to stormwater

Copper, lead, nickel and zinc exceeded the marine water ecosystem protection criteria which are likely to be the assessment criteria for disposal of groundwater into the stormwater network.

Assessment of disposal of groundwater to sewer

Groundwater analytical results assessed against the Sydney Water trade waste agreement criteria are presented in table 7 attached.

The pH of the groundwater was below the range of pH acceptable for discharge to sewer.

All other analytes were measured at concentrations below the criteria for discharge to sewer, including tetrachloroethylene in well MW4.

5.4.4. Soil Vapour

Sub-slab soil vapour analytical results are presented in Tables 7.

Chlorinated hydrocarbons were detected in sub-slab soil vapour sample SV01 located inside the mall approximately 10m to the south-west of the dry cleaner. Tetrachloroethylene was measured at a concentration exceeding the HIL for residential in SV01.

Chlorinated hydrocarbons were not detected in sub-slab soil vapour sample SV02 located inside the mall at approximately 80m to the south of the dry cleaner.

Petroleum hydrocarbons were not detected in samples SV01 and SV02.

5.5. Discussion

5.5.1. General condition of the site

Based on the limited results of this investigation, the soil contamination recorded in soil, groundwater or soil vapour do not indicate the presence of impacts that would preclude the redevelopment of the site for residential use, taking into account that significant quantity of fill material and shallow groundwater that is showing localised impact arising dry cleaning chemical are removed during the redevelopment of the site.

5.5.2. Chlorinated solvents

Chlorinated solvents were identified in soil vapour and groundwater in the vicinity of the dry cleaner suggesting that the dry cleaner is likely to have been the source of impact. Typically, the most common source of chlorinated solvents at dry cleaners is due to leakage at the connection to the sewer. It appears that the sewer waste from the dry cleaner at the site is connected to the sewer running east under Baptist Street.

Due to access constraints, it was not possible to install a well in the immediate vicinity of the sewer connection of the dry cleaner, of the footpath of Baptist Street. Well MW4 located approximately 15 m to the south of the sewer connection.

Well MW4 inferred to be located down gradient from the sewer connection recorded dissolved concentrations of tetrachloroethylene, trichloroethylene and cis-dichloroethylene.

While greater than the criteria for drinking water, the concentration of tetrachloroethylene in MW4 (290 μ g/L) is well below the solubility limit of tetrachloroethylene, as such is not indicative of free phase product near the suspected source of impact.

The detection of tetrachloroethylene at wells MW1 at a concentration of 2 μ g/L distance of up 130 m from the dry cleaner suggests that there is a plume of tetrachlroehylene beneath the site. While the on-site, dissolved phase plume of chlorinated solvents may be managed as part of the redevelopment of the site, an off-site plume, should it exist, may require specific assessment and remediation including triggering the notification requirements under Section 60 of the Contaminated Land Management Act.

Based on the limited results of this investigation, the concentrations recorded in groundwater should not prevent the discharge of groundwater to public sewer via a trade waste agreement. It is noted that the groundwater may require pH adjustment prior to discharge to sewer.

The soil vapour impact detected in the sampling location located within the mall, inside the shopping centre, may be due to soil or groundwater impact. It is expected that most of the impacted material would be removed during the proposed redevelopment scenario being considered by Toga..

Further investigation is however recommended to assess whether chlorinated solvents are occurring offsite (see Section 5.7 below).

5.5.3. Asbestos

During this preliminary investigation, asbestos was detected at only one location. It is important to note that asbestos detection through sampling from boreholes tend to generally under detect asbestos in soil and experience at similar sites have shown that a significant fraction of fill could be impacted by asbestos. It is particularly worth noting that part of the site was historically used in the

manufacture of asbestos cement sheeting and subsequently those buildings were demolished and the site reprofiled.

On the basis of the above, at this stage it would be prudent to assume that asbestos may be present in the fill material at other locations. Further investigation is recommended to assess the presence of asbestos at additional locations across the site (see Section 5.7 below).

The portion of asbestos contaminated fill is to be classified as general solid waste, to be managed as asbestos waste.

Based on the presence of asbestos at other sites in Sydney, a reasonable estimate would be that up to 25% of the fill material present at the site is likely to be contaminated with asbestos.

5.5.4. Waste classification

Based on the limited results of this investigation, it was not possible to clearly correlate high concentrations of lead or benzo(a)pyrene with one particular type of fill material.

However, no sample of fill classified as restricted solid waste, based on lead and benzo(a)pyrene concentrations.

Based on criteria other than asbestos, the fill was considered to be generally classified as general solid waste (SCC1 & TCLP1).

One third of the samples classified as general solid waste (CT1) and complied with the Kurnell Landfill EPL for resource recovery waste storage limits.

Based on UCL 95% calculations (see Table 5 attached), the fill material could be considered as recoverable resource at seven sampling locations out of a total of 17 locations investigated.

There was no clear pattern in the horizontal or vertical distribution of the resource recovery waste, and the proportion of recoverable resource in the fill material was found to range from 0% (at locations BH1, BH4, BH8) to 100% (at location BH3) across the site.

Based on the limited results of this investigation, it was considered that a total of approximately 25% of the fill material at the site could be acceptable as recyclable material by landfills generally (e.g. Kurnell landfill).

5.6. Conclusions

- Based on the limited results of this investigation, the soil contamination recorded in soil, groundwater or soil vapour does not indicate the presence of impacts that would preclude the redevelopment of the site for residential use, particularly if a significant quantity of fill material and shallow groundwater that is showing localised impact arising from dry cleaning chemical is removed during the redevelopment of the site.
- Asbestos was identified at one location. However, based on findings at other similar sites in Sydney, it is considered that it is possible that a significant portion of fill material may be impacted with asbestos, whether in the form of fragments or fibres.
- Chlorinated solvents were identified at concentrations above the drinking water criteria near the suspected source of chlorinated solvents plume in the vicinity of the dry cleaner. While the onsite, dissolved phase plume of chlorinated solvents may be managed as part of the redevelopment of the site, an off-site plume, should it exist, may require specific assessment and remediation including triggering the notification requirements under Section 60 of the Contaminated Land Management Act. While there isn't sufficient data to assess whether a part of the plume is present off site, based on the available information, there is a low likelihood of significant off-site chlorinated solvent contamination in groundwater.

• Based on the limited results of this investigation, the groundwater beneath the site may require pH adjustment before discharge to sewer.

5.7. Further site investigations

We recommend that geotechnical site investigations and land contamination investigations be carried out to support planning and design as well as the development consent process, which is likely to require the demonstration of the suitability of the site for the development as per the state environmental planning policy. Such investigations could also be designed to collect additional information required to adequately classify the spoil for offsite disposal purposes.

For a site of this size development with a three level basement structure, up to five levels above ground, we expect that geotechnical investigations would comprise the drilling of at least six boreholes. Depending on the proposed loads, some boreholes should be cored to 3 m below the proposed basement level. The aim of such investigation would be to assess the depth and consistency/strength of the soil profile, depths and quality of the bedrock across the site, and provide data for the design.

Standpipes should be installed into selected boreholes to assess groundwater levels across the site and to perform groundwater inflow testing. Furthermore, water samples can be collected for water quality/chemistry testing if required. Based on the known flooding of the southern area of the site, continuous groundwater monitoring using down hole data loggers over a minimum two month period is recommended.

Coffey recommend that additional contamination investigation to refine the horizontal and vertical distribution of the waste classification of the fill material across the site.

Additional environmental investigation is recommended in the area of the dry cleaner to delineate the plume of dissolved chlorinated hydrocarbons off site to the east across Baptist Street.

Contamination investigations should be coordinated with geotechnical investigations to take advantage of geotechnical boreholes. However, the density and depth of these investigations will be different from the geotechnical assessment to meet regulatory guidelines.

6. Limitations

The initial geotechnical and environmental assessment and recommendations presented in this report are based on a desk study limited to regional information, and subsurface investigation data from outside of the site boundaries. Subsurface conditions can be complex, vary over relatively short distances and over time. Additional, site specific investigations will be required to support detailed design. Detailed design and construction should not proceed on the basis of this desk study report without further advice from Coffey.

Whilst the preliminary contamination investigation has indicated that the site is likely to be suitable for the proposed development subject to the identified contamination impacts being addressed during redevelopment, it is important to note that the investigation undertaken does not meet the NSW EPA sampling requirements based on detection of a maximum allowable hotspot size.

The attached document entitled "Important Information about Your Coffey Report" forms an integral part of this report and presents additional information about the uses and limitations of the report.

Important information about your **Coffey** Environmental Report

Introduction

This report has been prepared by Coffey for you, as Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice,

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be revised and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

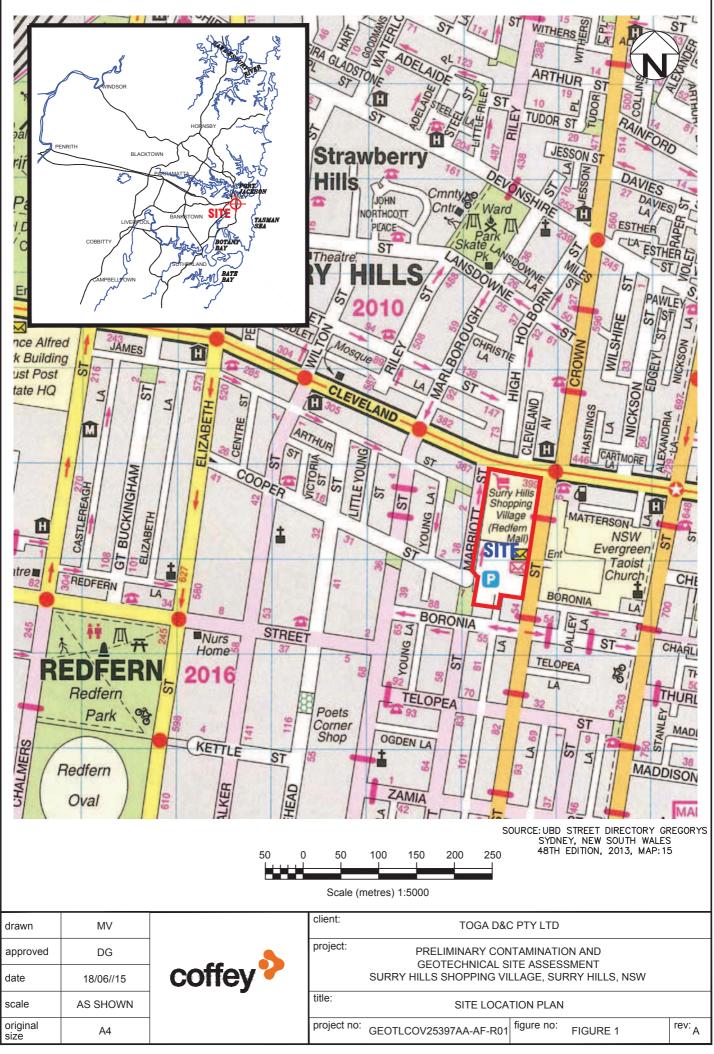
Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

Given Coffey prepared the report and has familiarity with the site, Coffey is well placed to provide such

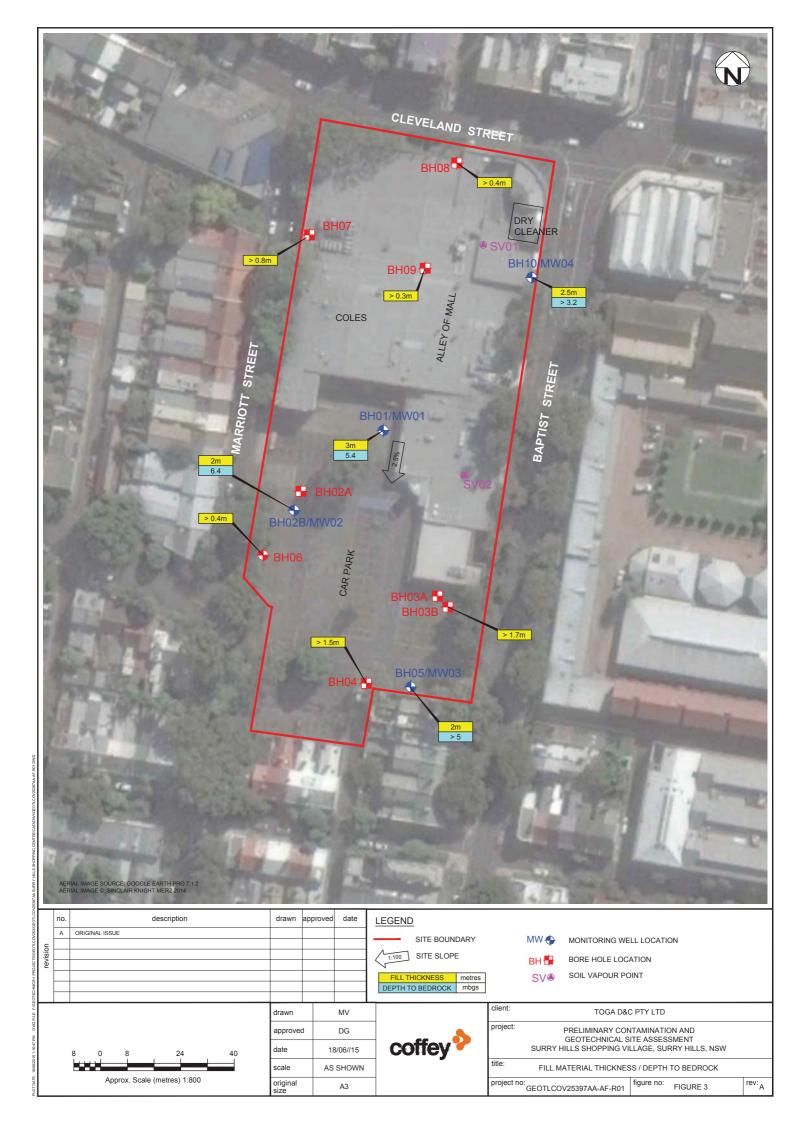
Coffey Environments Australia Pty Ltd ABN 65 140 765 902 Issued: 22 October 2013 assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Coffey disowns any responsibility for such misinterpretation.

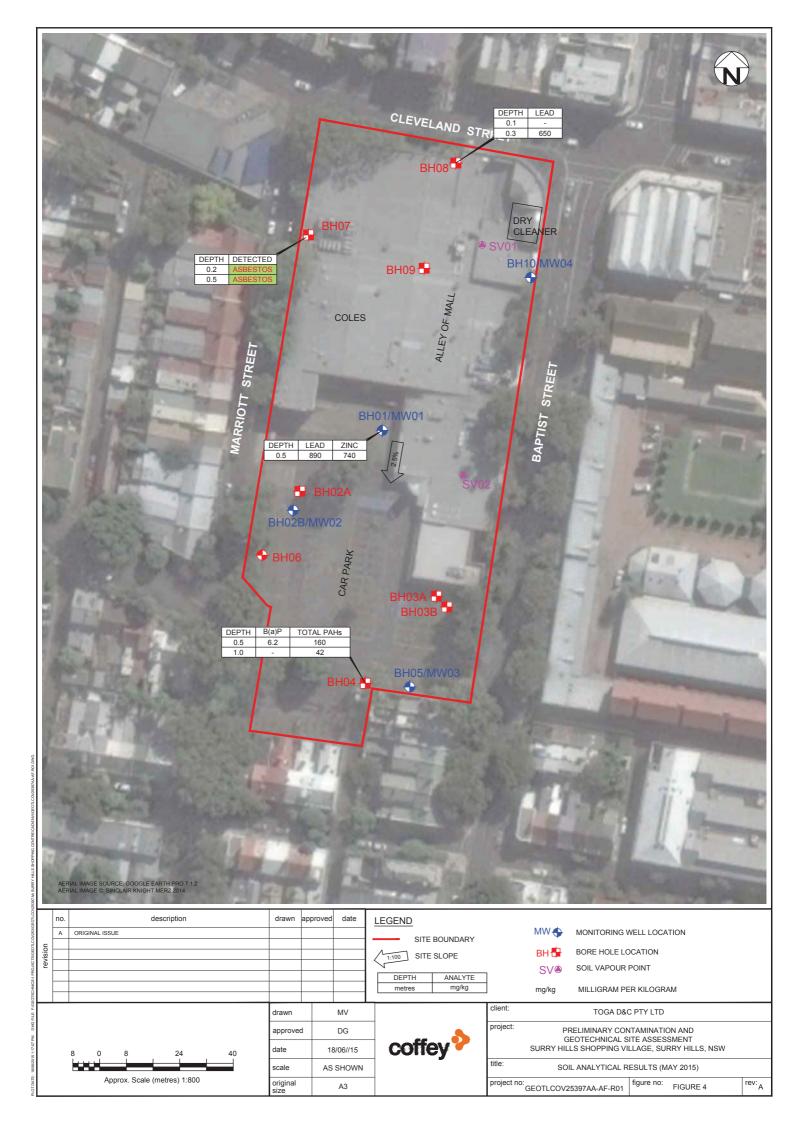
Data should not be separated from the report


The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

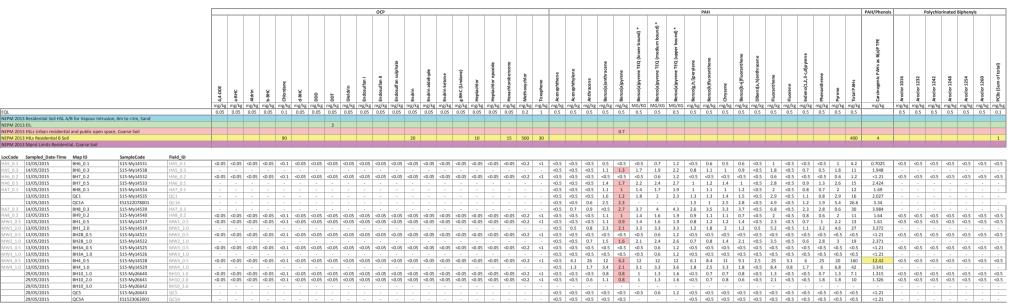
Responsibility


Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.


Figures

PLOT DATE: 1808/2015/1:1027PM DWGFLE: FiGEOTECHNCSI: PROJECTSGEOTCOV253GEOTCOV25397A SURFY HILLS SHOPPING CENTRE/CADIENVIGEOTCOV25397A ARF-R0

Tables


Table 1 Soil Analytical Results Land Use Assessment Criteria

						<u> </u>					-		BTEX									TRH						Ino	rganics				M	letals		-	
					Abbestos	Mon ocylic arom	Organoch lorine pesticides EPAVIc	Other organochlorine pesticides EPAVic	Polycylic aromatic hydrocarbons EPAVic	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Na phthal ene	TRH C6-C10 less BTEX (F1)	TRH>C	TRH C6 - C10	трн >с10 - с16	TRH >C16 - C34	TRH >C34 - C40	ткн с6 - с9	TRH C10 - C14	ТКН С15 - С28	ткн с29 - с36	TRH C10 - C36 (Sum of total)	Moisture Content (dried @ 103°C)	pH (aqueous extract)	Arsenic	Cad mium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
						mg/kg n	ig/kg i	mg/kg	mg/kg								ng/kg 20					mg/kg				mg/kg 50					mg/kg				g mg/kg		
EQL NEDM 2012 Rock	doptial Soil HSLA/E	P for Vacour Intruci	ion, Om to <1m, Sand						_	0.1	0.1	0.1	0.2	0.1	0.3	0.5	20		20	50	100	100	20	20	50	50	50	0.1	0.1	2	0.4	5	5	5	0.05	5	5
NEPM 2013 Resid	uential Soll HSE A/E	s for vapour intrusi	on, om to <1m, Sand							0.5	160	- 25			40	10	45	110											_	40			20	470		5	15
	Urban residential :	and public open spi	ace. Coarse Soil							50	70	85			105	10			180	120	300	2800								40			20	470		5	15
	Residential B Soil	and public open sp	ace, coarse son						_	30	70	0.5		-	105	-		_	100	120	300	2000		_			_			500	150	_	30.000	1200	120	1200	60.000
	nt Limits Residentia	al Coarse Soil																	700	1000	2500	10,000								500	150		50,000	1200	120	1100	00,000
112013 11001	it cimes itesidentia	1, course son					_	_						_		_			700	1000	2300	10,000						_									
		Map ID	SampleCode	Field_ID																																	
		BH6_0.1	S15-My14531	HA5_0.1	Absent	<0.6 <			6.1	< 0.1		<0.1	<0.2			< 0.5	<20				140	<100	<20	<20	77	86	160			29	<0.4	47	45		0.09		160
		BH6_0.3	S15-My14538	HA5_0.3	Absent		-	-	11.6	<0.1	< 0.1	< 0.1	<0.2		< 0.3	< 0.5	<20				360	130		39	160	240	440		-	24	<0.4	40	63		0.09		150
		BH7_0.2	S15-My14532	HA6_0.2	Present	0.45 <			4.45	< 0.1	< 0.1	<0.1	0.2	0.1	0.3	<0.5	<20				<100	<100	<20	<20	60	57	120			2.3	<0.4	5.6	37	63	0.24		130
		BH7_0.5	S15-My14533	HA6_0.5	Present	0.4	-	-	15.8	0.1	0.1	< 0.1	<0.2		< 0.3	< 0.5	<20				160	<100	<20	<20	100	85	190			2.7	<0.4	8.8	63		0.18		200
HA7_0.1 13/05		BH8_0.1	S15-My14534	HA7_0.1	Absent	<0.6	-	-	12.2	<0.1		<0.1	<0.2			<0.5	<20				450	190	<20	<20	250	290	540	8.2	•	4.3	0.4	13	76		0.34		340
		QC1	\$15-My14535	QC1		<0.6	-	-	16	<0.1		< 0.1	< 0.5			<0.3	<20				480	200	<20	<20	270	320	590	11		4.6	<0.4	25	93		0.35		470
		QC1A	ES1522078001	QC1A			-		25.05	<0.2	<0.5	<0.5	<0.5			<0.5	<10				370	170	<10	<50	240	210		8.4		<5	<1	11	73	345		9	278
		BH8_0.3	\$15-My14539 \$15-My14540	HA7_0.3 HA8_0.2	Absent Absent	<0.6	-		27.45	<0.1	<0.1	<0.1	<0.2			<0.5	<20				280	<100	<20 <20	<20 <20	170	160	330	10 9.1	-	8.8	1	17 19	150 16		0.77		530 65
		BH9_0.2 BH1 0.5	\$15-My14540 \$15-My14517	MW1 0.5	Absent	<0.6 <			12.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.5	<20				<100	<100	<20	<20	<50	<50 <50	<50 64	9.1	- 8.6	5.3	<0.4	19 25	16	890			740
MW1_0.5 13/05		BH1_0.5 BH1 2.0	\$15-My14517 \$15-My14519	MW1_0.5	Absent		- 1.15		26.05	<0.1			<0.2	<0.1		<0.5	<20				140	<100	<20	<20	120	<50	120		8.0	4.8	<0.4	45	99		1.1		210
MW2 0.5 13/05		BH1_2.0 BH2B 0.5	\$15-My14519 \$15-My14521	MW2 0.5	Absent	<0.6 <			<7.5	<0.1		<0.1	<0.2			<0.5	<20				<100	<100	<20	<20	<50	<50	<50	8.1		4.8	<0.4	45	7.9	250			11
MW2_0.5 13/05		BH2B_0.5 BH2B_1.0	\$15-My14522 \$15-My14522	MW2_0.5	Absent	<0.6	1.15		\$7.5	<0.1		<0.1		<0.1		<0.5	<20				<100	<100	<20	<20	71	<50	<50 71			2.2	<0.4	55	14		0.11		83
MW3 0.5 13/05		BH2B_1.0 BH3A 0.5	\$15-My14522 \$15-My14525	MW3 0.5	Absent	<0.6 <			<7.5	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.5	<20				<100	<100	<20	<20	<50	<50	<50	6.6		<2	<0.4	20	14	9			24
MW3_0.5 13/05		BH3A_0.5	\$15-My14526	MW3_0.5	Absent		1.15	<0.9	<7.5	<0.1	<0.1	<0.1	<0.2			<0.5	<20				<100	<100	<20	<20	<50	<50		8.2		<2	<0.4	44	8.9		<0.05		14
		BH4 0.5	S15-My14528	MW4 0.5	Absent	0.5 <			155.9	0.2	0.1	<0.1	<0.2			<0.5	<20				600	<100	<20	<20	500	180	680	12		3.2	<0.4	13	20		0.23		240
		BH4_0.5 BH4_1.0	\$15-My14529	MW4_0.3	Absent	<0.6	-		40.55	<0.1	<0.1	<0.1	<0.2			<0.5	<20				190	<100	<20	<20	150	65	220	13		5.2	<0.4	13	13		0.23		120
MW4_0.5 13/05						0.35 <	1.15		8.3	0.1	<0.1	<0.1	<0.2				<20				<100	<100	<20	<20	<50	<50	<50	11		21	0.8	7.2	23		0.49		410
MW4_1.0 13/05		BH10 1 0	\$15-My26640																																		
MW4_1.0 13/05 29/05	5/2015	BH10_1.0 BH10_2.0	\$15-My26640 \$15-My26641	BH10_1.0 BH10_2.0	Absent Absent					0.1	< 0.1	< 0.1	<0.2	< 0.1	< 0.3	< 0.5	<20	<50	<20	<50	<100	<100	<20	<20	<50	<50	<50	8.6	-	2.1	< 0.4		7.4	90	0.44	<5	180
MW4_1.0 13/05 29/05 29/05	5/2015 5/2015	BH10_1.0 BH10_2.0 BH10_3.0	S15-My26641	BH10_1.0 BH10_2.0 BH10_3.0		0.35 <				0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.5	<20	<50	<20	<50	<100	<100	<20	<20	<50	<50	<50	8.6 12	•	2.1	<0.4	<5	7.4	90	0.44	<5	180
MW4_1.0 13/05 29/05 29/05 29/05	5/2015 5/2015 5/2015	BH10_2.0		BH10_2.0		0.35 <	1.15	<0.9	11.45		-	-		-		-		-	-	-								12	-			<5		-	0.44	-	

Notes:

NEPM 2013 Residential Soil HSL A/B for Vapour Intrusion, 0m to <1m, Sand NEPM 2015 EIL NEPM 2015 ESLS urban residential and public open space, Coarse Soil NEPM 2013 HILS Residential B Soil NEPM 2013 Mm Limits Residential, Coarse Soil

Notes:

	NEPM 2013 Residential Soil HSL A/B for Vapou
	NEPM 2013 EIL
	NEPM 2013 ESLs Urban residential and public of
	NEPM 2013 HILs Residential B Soil
	NEPM 2013 Mgmt Limits Residential, Coarse Sc

						Polych	lorinated B	iphenyls																													
				1,1,1, 2-tetrachloroethane	1,1,1-trichloroethane	1,1,2,2-tetrachloroethane	1,1,2-trichloroethane	1,1-di chlo roet han e	1,1-dichloroethene	1, 2,3-trichloropropane	1,2-di bromo ethane	1,2-dichloroben zen e	1,2-dichloroethane	1,2-di chlo ropr opane	1,3-di chlo roben zen e	1,3-di chloropropane	1,4-di chlo roben zen e	Bro modich lor omethane	Bro moform	Bromomethane	Carbon tetrachloride	Chloroben zen e	Chlorodi bro momethane	Chloroform	Chloromet hane	cis-1,2-d ichloro ethene	cis-1,3-di chloro prop ene	Dibromomethane	Dichlor omethane	lodomethane	Trich lor oethen e	Tetrachioroethene	trans-1,2-dichlor oethene	trans-1, 3-dichl or opro pene	Trich lor of u or o met han e	Vinyl chloride	Chlorin at ed hydrocarbon s EPAVIc
				mg/kg		mg/kg			mg/kg		mg/kg			mg/kg				mg/kg								mg/kg						mg/kg				mg/kg	mg/k
M 2013 Residential Soil HSL				0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
M 2013 Residential Soil HSL M 2013 EIL	LAVE for Vapour Intrus	aon, om to <1m, Sand																																			
M 2013 ESLs Urban residen	ntial and public onen sr	ace. Coarse Soil																																			
VI 2013 ESES Orban resident VI 2013 HILS Residential B S		Jace, coarse son																																			
vi 2013 Mgmt Limits Reside																																					
de Sampled Date-Tim	ne Map ID	SampleCode	Field ID																																		
0.1 13/05/2015	BH6_0.1	\$15-My14531	HA5_0.1			-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.3 14/05/2015	BH6_0.3	\$15-My14538	HA5_0.3			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
0.3 14/05/2015 0.2 13/05/2015	BH6_0.3 BH7_0.2	\$15-My14538 \$15-My14532	HA5_0.3 HA6_0.2			-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-
0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5	\$15-My14538 \$15-My14532 \$15-My14533	HA5_0.3 HA6_0.2 HA6_0.5					-		-	-	-	-		-	-	-	-			-		-	-			-	-	-	-			-	-	-	-	-
0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015 0.1 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1	S15-My14538 S15-My14532 S15-My14533 S15-My14534	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1					- - -	-	-	-	-	-		-	-	-	-		-		-		-	-	- - -				-			-	-		- - -	-
0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015 0.1 13/05/2015 13/05/2015 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1	S15-My14538 S15-My14532 S15-My14533 S15-My14533 S15-My14534 S15-My14535	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1					- - - -	-	- - - -		-	-		-	-		- - - -	-	-	-	- - -	-	- - - -	-		-	-	-	-			-	- - - -			-
0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015 0.1 13/05/2015 13/05/2015 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1 QC1A	S15-My14538 S15-My14532 S15-My14533 S15-My14533 S15-My14534 S15-My14535 ES1522078001	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1 QC1A	- -	-			- - -	-	-	-	- - -	-		-	-	-	-		-	-	-		-	-	- - - -		-		-	-		-	-		- - - -	
0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 0.3 14/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1	S15-My14538 S15-My14532 S15-My14533 S15-My14533 S15-My14534 S15-My14535	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1	-	-		- - - - - -	- - - - - -	- - - -	- - - - -				- - - - -			- - - - -	- - - - -	- - - - -		- - - - -	- - - - -		- - - - -	-	- - - - -	- - - - -	- - - - -	- - - - -			- - - - - -		- - - - -		- - - - -	
0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015 13/05/2015 13/05/2015 13/05/2015 0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1 QC1A BH8_0.3 BH9_0.2 BH1_0.5	S15-My14538 S15-My14532 S15-My14533 S15-My14534 S15-My14535 ES1522078001 S15-My14539	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1 QC1A HA7_0.3	-	-	- - - - - - - -	- - - - - - - - -	- - - - - - - - -		- - - - - - - -	- - - - - - - - - - -	- - - - - -	- - - - - -	- - - - - -	- - - - - - -		- - - - - -	- - - - - - - -	- - - - - -		- - - - - - -	- - - - - -		- - - - - - -		- - - - - - -	- - - - - - -	- - - - - -	- - - - - - -		- - - - - - -	- - - - - - - -		- - - - - - - - -		- - - - - - - -	
13/05/2015 0.3 14/05/2015 0.2 13/05/2015 1_0.5 13/05/2015 1_2.0 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1 QC1A BH8_0.3 BH9_0.2 BH1_0.5 BH1_2.0	\$15-My14538 \$15-My14532 \$15-My14533 \$15-My14534 \$15-My14535 \$15:2078001 \$15-My14539 \$15-My14540 \$15-My14540 \$15-My14517 \$15-My14519	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1 QC1A HA7_0.3 HA8_0.2 MW1_0.5 MW1_2.0	-	-	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - -		- - - - - - - - - - -	-	- - - - - - -	-	-	- - - - - - - - - -	- - - - - - - - - - -	-		- - - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - -	-	- - - - - - - -	- - - - - - - - - - -	- - - - - - - -	- - - - - - - - - - - -	-	- - - - - -	- - - - - - - - - - - -	-	- - - - - - - - - - - - - -		- - - - - - - - -	- - - - - - - - - - - - - - - - - - -
0.3 14/05/2015 0.2 13/05/2015 0.5 13/05/2015 1 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 0.3 14/05/2015 0.2 13/05/2015 0.2 13/05/2015 0.2 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1 QC1A BH8_0.3 BH9_0.2 BH1_0.5 BH1_2.0 BH2_0.5	\$15-My14538 \$15-My14532 \$15-My14533 \$15-My14533 \$15-My14533 \$15-My14535 \$15-My14539 \$15-My14519 \$15-My14517 \$15-My14519 \$15-My14519	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1 QC1A HA7_0.3 HA8_0.2 MW1_0.5 MW1_2.0 MW1_2.0	-	-	- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - - -		- - - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -		- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - -		- - - - - - - - - -	- - - - - - - - - - - - - - - - -					
3 14/05/2015 3 14/05/2015 3 13/05/2015 3 13/05/2015 3 13/05/2015 3 13/05/2015 3 13/05/2015 3 14/05/2015 0.2 13/05/2015 0.2 13/05/2015 0.2 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 1.0 13/05/2015 1.0 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH7_0.5 BH8_0.1 QC1 BH8_0.3 BH9_0.2 BH1_0.5 BH1_0.5 BH1_2.0 BH2B_0.5	\$15-My14538 \$15-My14532 \$15-My14533 \$15-My14533 \$15-My14533 \$15-My14535 \$15-My14535 \$15-My14539 \$15-My14540 \$15-My14517 \$15-My14517 \$15-My14512 \$15-My14521 \$15-My14522	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1A HA7_0.3 HA8_0.2 MW1_2.0 MW1_2.0 MW2_0.5 MW2_1.0	-	-	- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - - - -		- - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -				
3 14/05/2015 2 13/05/2015 2.1 13/05/2015 3.1 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 2.2 13/05/2015 2.0 13/05/2015 2.0 13/05/2015 2.0 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1 QC1A BH9_0.2 BH1_0.5 BH1_0.5 BH2_0.5 BH2_0.0 BH2_0.1 BH3_0.5	S15-My14538 S15-My14532 S15-My14533 S15-My14533 S15-My14533 S15-My14533 S15-My14539 S15-My14540 S15-My14540 S15-My14540 S15-My14541 S15-My14521 S15-My14522 S15-My14525	HAS 0.3 HA6 0.2 HA6 0.5 HA7 0.1 QC1 QC1A HA7 0.3 HA8 0.2 MW1 0.5 MW2 0.5 MW2 0.5	-	-	- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		· · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -	
3 14/05/2015 2 13/05/2015 5 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 0.5 13/05/2015 1.0 13/05/2015 1.0 13/05/2015 1.0 13/05/2015 1.0 13/05/2015 1.0 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1 QC1 QC1 BH8_0.3 BH9_0.2 BH1_0.5 BH2_0.5 BH2_0.5 BH2_0.5 BH2_0.1 BH3_0.5 BH3_0.1	515-My14538 515-My14532 515-My14533 515-My14533 515-My14534 515-My14535 515-My14535 515-My14539 515-My14512 515-My14512 515-My14522 515-My14522 515-My14526	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1 QC1 QC1 HA8_0.2 MW1_0.5 MW1_0.5 MW1_2.0 MW2_0.5 MW2_0.5 MW2_1.0 MW3_0.5 MW3_0.5	-		- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - - - -	- - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -						
3 14/05/2015 2 13/05/2015 5 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 2 13/05/2015 2 13/05/2015 3 14/05/2015 13/05/2015 13/05/2015 13 13/05/2015 13 13/05/2015 13 13/05/2015 13 13/05/2015 13 13/05/2015 13 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH7_0.5 BH8_0.1 QC1 QC1 BH9_0.2 BH1_0.5 BH1_0.5 BH2_0.0 BH3_0.1 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0	S15-My14538 S15-My14532 S15-My14533 S15-My14533 S15-My14533 S15-My14534 S15-My14535 S15-My14530 S15-My14540 S15-My14540 S15-My14540 S15-My14540 S15-My14540 S15-My14526 S15-My14525 S15-My14526 S15-My14526	HAS_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1 QC1 MW1_0.5 MW2_0.5 MW2_1.0 MW3_0.5 MW3_0.5 MW3_0.5 MW3_0.5 MW3_0.5 MW3_0.5	-	-	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -							
3 14/05/2015 12 13/05/2015 12 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 10 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015 0.5 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QCIA QCIA BH8_0.3 BH9_0.2 BH1_0.5 BH2_0.5 BH2_0.5 BH2_0.5 BH3_0.5 BH3_1.0	515-My14538 515-My14532 515-My14533 515-My14533 515-My14534 515-My14535 515-My14535 515-My14539 515-My14512 515-My14512 515-My14522 515-My14522 515-My14526	HA5_0.3 HA6_0.2 HA6_0.5 HA7_0.1 QC1 QC1 QC1 HA8_0.2 MW1_0.5 MW1_0.5 MW1_2.0 MW2_0.5 MW2_0.5 MW2_1.0 MW3_0.5 MW3_0.5	-		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -												
3 14/05/2015 2 13/05/2015 13 13/05/2015 13 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015 10 13/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH7_0.5 BH8_0.1 QC1 QC1 BH9_0.2 BH1_0.5 BH1_0.5 BH2_0.0 BH3_0.1 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0 BH3_0.0	515-My14538 515-My14532 515-My14533 515-My14533 515-My14534 515-My14535 515-My14535 515-My14539 515-My14539 515-My14520 515-My14521 515-My14526 515-My14526 515-My14526 515-My14526	HA5 0.3 HA6 0.2 HA6 0.2 HA7 0.1 QC1 QC1 QC1 HA7 0.3 MW1 2.0 MW2 0.5 MW2 0.5 MW2 0.5 MW2 1.0 MW3 0.5 MW2 1.0 MW3 0.5 MW3 1.0 MW3 0.0				- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -								- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	
3 4/09/2015 3 4/09/2015 3 13/09/2015 3 13/09/2015 3 13/09/2015 3 13/09/2015 3 13/09/2015 3 13/09/2015 3 3/09/2015 3 3/09/2015 3 3/09/2015 3 3/09/2015 3 3/09/2015 1 3/09/2015 1 3/09/2015 1 3/09/2015 1 3/09/2015 1 3/09/2015 1 3/09/2015 1 3/09/2015 1 3/09/2015 1 3/09/2015 3 3/09/2015 2/05/2015 2/05/2015 2/05/2015 2/05/2015	BHE 0.3 BH7 0.2 BH7 0.5 BH8 0.1 OC1 OC1 BH8 0.3 BH8 0.3 BH7 0.5 BH8 0.3 BH7 0.5 BH1 0.5 BH2B 0.5 BH3A 1.0 BH4 0.5 BH4 0.5 BH10 2.0 BH10 3.0	515-Mr)/4532 515-Mr)/4532 515-Mr)/4533 515-Mr)/4534 515-Mr)/4534 515-Mr)/4536 515-Mr)/4545 515-Mr)/4540 515-Mr)/4540 515-Mr)/4540 515-Mr)/4542 515-Mr)/4525 515-Mr)/4525 515-Mr)/4525 515-Mr)/4528 515-Mr)/4528	HA5 0.3 HA6 0.2 HA6 0.2 HA7 0.1 QCI QCI MW7 0.3 HA7 0.5 HA7 0.			- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -								- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	
3 4/09/2015 3 4/09/2015 3 3/09/2015 3.5 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 3.4/05/2015 13/05/2015 3.4/05/2015 23/05/2015 3.5 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.6 13/05/2015 3.70/05/2015 2/05/2015	BH6_0.3 BH7_0.2 BH7_0.5 BH8_0.1 QC1 QC1 BH8_0.3 BH8_0.3 BH2_0.5 BH2_0.5 BH2_0.5 BH2_0.5 BH3_0.5 BH3_1.0 BH4_0.5 BH3_1.0 BH4_0.5 BH3_1.0 BH4_0.2.0	515-Mr)/4532 515-Mr)/4532 515-Mr)/4532 515-Mr)/4533 515-Mr)/4533 515-Mr)/4535 515-Mr)/4535 515-Mr)/4539 515-Mr)/4537 515-Mr)/4527 515-Mr)/4527 515-Mr)/4526 515-Mr)/4529 515-Mr)/4529 515-Mr)/4529 515-Mr)/4529 515-Mr)/4529	HA5 0.3 HA6 0.2 HA7 0.1 OC1 OC1 CCA HA7 0.3 HA7 0.5 HA7 0.5 HA			- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -									- - - - - - - - - - - - - - - - - - -				- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	

NEPM 2013 Residential Soil HSL A/B for Vapou
NEPM 2013 EIL
NEPM 2013 ESLs Urban residential and public (
NEPM 2013 HILs Residential B Soil
NEPM 2013 Mgmt Limits Residential, Coarse Sc

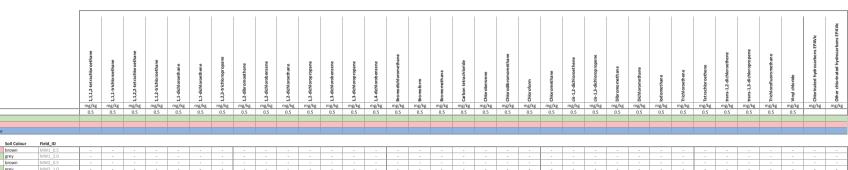
	icates (SOIL) _Report_Nui		Lab Repoi Field ID Sampled I	457842 BH8_0.1 13/05/2015	457842 QC1 13/05/2015	RPD	457842 BH8_0.1 13/05/2015	Interlab_D QC1A 13/05/2015	RPD	459646 QC5 29/05/2015	Interlab_D QC5A 29/05/2015	RPD
Chem Gr	ChemNamU	nits	EQL								Г	
BTEX			0.1 (Primai	<0.1	<0.1	0	<0.1	<0.2	0	<0.1	<0.2	0
BIER	Ethylbenzem		0.1 (Prima	<0.1	<0.1	0	<0.1	<0.5	0	<0.1	< 0.5	0
			0.1 (Prima	<0.1	<0.1	0	<0.1	<0.5	0	<0.1	< 0.5	0
	Naphthaler m		0.5 (Prima	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	< 0.5	0
	Naphthalerm		0.5 (Prima	<0.5	<0.5	0	<0.5	<0.5	0	< 0.5	< 0.5	0
			0.2 (Prima	<0.2	<0.2	0	<0.2	<0.5	0	<0.2	< 0.5	0
			0.1 (Prima	<0.2	<0.2	0	<0.2	<0.5	0	<0.2	< 0.5	0
	Xylene Tot m		0.3 (Prima	<0.3	<0.3	0	<0.3	<0.5	0	<0.3	< 0.5	0
	Xylene rouni	ig/itg	0.5 (1 1111	-0.0	-0.0	0	-0.0	-0.0	0	-0.0	-0.0	0
TRH	TRH C6-C m	na/ka	20 (Primar	<20.0	<20.0	0	<20.0	<10.0	0	<20.0	<10.0	0
	TRH >C10 m		50	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0
	TRH C6 - (m		20 (Primar	<20.0	<20.0	0	<20.0	<10.0	0	<20.0	<10.0	0
	TPH >C10 m		50	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0
	TRH >C16 m		100	450.0	480.0	6	450.0	370.0	20	<100	<100	0
	TRH >C34 m		100	190.0	200.0	5	190.0	170.0	11	<100	<100	0
	TRH C6 - (m		20 (Primar	<20.0	<20.0	0	<20.0	<10.0	0	<20.0	<50.0	0
	TRH C10 - m		20 (Primar	<20.0	<20.0	0	<20.0	<50.0	0	<20.0	<50.0	0
	TRH C15 - m		50 (Primar	250.0	270.0	8	250.0	240.0	4	<100	<100	0
	TRH C29 - m		50 (Primar	290.0	320.0	10	290.0	210.0	32	<100	<100	0
	TRH C10 - m		50	540.0	590.0	9	540.0	450.0	18	<100	<100	0
		33				-						-
Inorganics	Moisture C %	, D	0.1	8.2	11.0	29	8.2			8.9		
Metals	Arsenic m	ng/kg	2 (Primary	4.3	4.6	7	4.3	<5.0	0	5.9	6	2
			0.4 (Primai	0.4	<0.4	0	0.4	<1.0	0	<0.4	<1	0
	Chromium m	ng/kg	5 (Primary	13.0	25.0	63	13.0	11.0	17	7.7	16	70
	Copper m	ng/kg	5	76.0	93.0	20	76.0	73.0	4	<5	<5	0
	Lead m	ng/kg	5	370.0	410.0	10	370.0	345.0	7	12	26	74
	Mercury m	ng/kg	0.05 (Prim:	0.34	0.35	3	0.34	0.3	13	0.09	0.2	76
	Nickel m	ng/kg	5 (Primary)	8.7	13.0	40	8.7	9.0	3	<5	<2	0
	Zinc m	ng/kg	5	340.0	470.0	32	340.0	278.0	20	18	28	43
PAH	Acenaphth m	na/ka	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
FAIL	Acenaphth m		0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Anthracenem		0.5	<0.5	<0.5	0	<0.5	0.6	18	< 0.5	< 0.5	0
	Benzo(a)arm		0.5	1.1	1.6	37	1.1	2.5	78	<0.5	<0.5	0
	Benzo(a)pym	0 0	0.5	1.0	1.2	18	1.0	2.3	79	< 0.5	< 0.5	0
	Benzo(a)pym	0 0	0.5	1.4	1.2	25	1.4	2.0	10	<0.5	-	v
	Benzo(a)p		0.5	1.7	2.0	16	1.7			0.6		
	Benzo(a)p		0.5	1.9	2.3	19	1.9			1.2	-	
	Benzo(g,h, m		0.5	1.0	1.3	26	1.0	1.5	40	< 0.5	<0.5	0
	Benzo(k)flum		0.5	1.1	1.3	17	1.1	1.0	10	< 0.5	< 0.5	0
			0.5	1.0	1.4	33	1.0	2.5	86	< 0.5	< 0.5	0
	Benzo[b+j]m		0.5	1.2	1.5	22	1.2	2.8	80	< 0.5	< 0.5	0
	Dibenz(a,h m		0.5	< 0.5	<0.5	0	<0.5	<0.5	0	< 0.5	< 0.5	0
	Fluoranthe m		0.5	2.0	2.9	37	2.0	4.9	84	< 0.5	< 0.5	0
			0.5	< 0.5	<0.5	0	< 0.5	<0.5	0	< 0.5	< 0.5	0
	Indeno(1,2 m	0 0	0.5	0.8	1.1	32	0.8	1.2	40	< 0.5	< 0.5	0
	Phenanthrem		0.5	0.7	0.8	13	0.7	1.9	92	<0.5	< 0.5	0
			0.5	2.0	2.9	37	2.0	5.4	92	<0.5	< 0.5	0
	Total PAHsm		0.5	12.0	16.0	29	12.0	26.6	76	< 0.5	< 0.5	0

 Image: Instant Section
 Section<

									PAH/F	henols	(SIM)				BT	ΈX									TRH						TPH	Ir	norgani	ics		-		N	Metals			
					Aono cylic aromatic hydrocarb ons EPAVic	organochlorine pesticides EPAVIc	Other organochlorine pesticides EPAVic	olycylic aromatic hydrocarb ons EPAVic	enzo(a)pyrene TEQ (haif LOR)	enzo(a)pyrene TEQ (LOR)	enzo(a)pyrene TEQ (zero)	enzene	t hylbenzen e	oluene	ia pht hal en e	ylene (m & p)	ylene (o)	ylene Total	o tal B TEX	RH C6-C10 less BTEX (F1)	RH >C10-C16 less Naphthalene (F2)	IRH C6 - C10	PH ×C10 - C16	RH >C16 - C34	RH >C34 - C40	RH C6 - C9	RH C10 - C14	RH C15 - C28	RH C29 - C36	RH C10 - C36 (Sum of total)	:10 - C40 (Sum of total)		Aoisture Content (dried @ 103°C)	H (aqueous extract)	rsenic	ad mi um	hromiu m	opper	pea	Aercury	lickel	inc
					mg/kg	mg/kg	mg/kg r	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	re/kg	mg/kg	mg/kg	× mg/kg	mg/kg		re/kg			re/kg	re/kg	re/kg			mg/kg	re/kg	mg/kg	mg/kg	~ ~	≪ ρ	H Units	e mg/kg	mg/kg	mg/kg	t mg/kg	z mg/kg	e mg/k	ke me/	kg mg/kg
EQL					1								0.1		0.5			0.3		10		10	50	100	100		20	50	50	50			0.1					5				5
NSW 2008 General Solid Waste	CT1 - No Leaching)										10		288				1000							14					1.0					100				100			
NSW 2008 Restricted Solid Wast	e (CT2 - No Leachi	ng)										40	2400	1152				4000																	400	80			400	16	160	0
Kurnell Landfill EPL other limits f			age																							150				1600					40	2		200		1.5		600
LocCode Sampled_Date-Time		Map ID	Soil Colour	Field_ID																																						
13/05/2015		BH1_0.5	brown	MW1_0.5			<0.9		-	-	•				< 0.5		<0.1		-		<50			<100			<20	64	<50	64	-			8.6		0.6						7 740
13/05/2015	\$15-My14519	BH1_2.0	grey	MW1_2.0	<0.6			26.05	-	-	•		< 0.1	<0.1	<0.5	<0.2		< 0.3	-	<20	<50	<20	<50	140	<100	<20	<20	120	<50	120	· ·		14	-	4.8	<0.4	45	99	250	1.1		
13/05/2015	\$15-My14521	BH2B_0.5	brown	MW2_0.5			<0.9		-	-			< 0.1	<0.1	<0.5	< 0.2		< 0.3	-	<20	<50	<20	<50		<100	<20	<20	<50	<50	<50			8.1	-			11			< 0.0		5 11
13/05/2015	S15-My14522 S15-My14525	BH2B_1.0 BH3A 0.5	brown	MW2_1.0 MW3_0.5	<0.6	-	<0.9	17.85	-	-			<0.1	<0.1	< 0.5	<0.2		< 0.3	-	<20	<50	<20	<50 <50	<100	<100	<20	<20	71	<50	<50			8.5 5.6	-	2.2	<0.4	55	14		<0.03		
13/05/2015	S15-My14525 S15-My14526	BH3A_0.5 BH3A_1.0		MW3_0.5 MW3_1.0	<0.6			<7.5	-	-	•		<0.1	<0.1	<0.5	<0.2	<0.1		-	<20	<50	<20 <20	<50	<100 <100	<100	<20	<20 <20	<50	<50 <50	<50			5.6 8.2	-		<0.4				<0.0		
13/05/2015	S15-My14526 S15-My14528	BH3A_1.0 BH4 0.5	grey	MW3_1.0 MW4_0.5			<0.9		-	-	•		<0.1	<0.1	<0.5	<0.2		<0.3	•	<20	<50	<20	<50	<100	<100	<20	<20	<50	<50	<50	· ·		5.2 12	-	3.2	<0.4	13	20	1/	<0.0		
13/05/2015	\$15-My14528 \$15-My14529	BH4_0.5 BH4_1.0	grey brown	MW4_0.5	<0.6			40.55	-				<0.1	<0.1	<0.5	<0.2	<0.1		-		<50	<20	<50		<100	<20	<20	150	65	220	1		12			<0.4						
13/05/2015		BH6 0.1	brown	HA5 0.1			<0.9						<0.1	<0.1	<0.5	<0.2		<0.3			<50	<20	<50	140	<100	<20	<20	77	86	160			9.1			<0.4		45	130			3 160
14/05/2015	S15-My14538	BH6 0.3	brown	HA5 0.3	<0.6			11.6					<0.1	<0.1	<0.5	<0.2		<0.3		<20	<50	<20	<50	360	130	<20	39	160	240	440			5.1		2.5	<0.4	40	63	130			
13/05/2015	S15-My14532	BH7 0.2	brown	HA6 0.2			<0.9		-				<0.1	<0.1	<0.5	0.2		0.3		<20	<50	<20	<50	<100	<100	<20	<20	60	57	120	1		7.8		2.3	<0.4		37	63	0.03		
13/05/2015	S15-My14532	BH7 0.5	brown	HA6 0.5	0.45			15.8					<0.1	0.1	<0.5	<0.2		<0.3		<20	<50	<20	<50	160	<100	<20	<20	100	85	190	· ·		8.3	-		<0.4			120			
13/05/2015	\$15-My14534	BH8 0.1	brown	HA7 0.1	<0.6			12.2	-				< 0.1	<0.1	<0.5	<0.2		<0.3	-	<20	<50	<20	<50	450	190	<20	<20	250	290	540	-		8.2		4.3	0.4	13		370			7 340
14/05/2015	\$15-My14539	BH8 0.3	brown	HA7 0.3	<0.6			27.45	-	-			< 0.1	<0.1	<0.5	<0.2		< 0.3	-		<50	<20	<50		<100	<20	<20	170	160	330	-		10	-	8.8	1	17	150				9 530
13/05/2015	\$15-My14540	BH9 0.2	grey / brown	HA8 0.2	<0.6	<1.15	<0.9	12.1	-	-		<0.1	< 0.1	< 0.1	<0.5	<0.2	<0.1	< 0.3	-	<20	<50	<20	<50	<100	<100	<20	<20	<50	<50	<50	-		9.1	-	2.9	< 0.4	19			0.22	2 12	2 65
29/05/2015	\$15-My26640	BH10 1.0	brown	BH10 1.0			<0.9		l	l			< 0.1	<0.1	<0.5	<0.2	<0.1				<50	<20	<50	<100	<100	<20	<20	<50	<50	<50			11	-	21		7.2		160			
29/05/2015	S15-My26641	BH10_2.0	brown	BH10_2.0	0.35	<1.15	<0.9	11.45				0.1	< 0.1	< 0.1	< 0.5	<0.2	<0.1			<20	<50	<20	<50	<100	<100	<20	<20	<50	<50	<50		1	3.6	-	2.1	< 0.4			90	0.44		
29/05/2015	\$15-My26642	BH10 3.0	residual	BH10 3.0	-	-	-	-			-	-	-	-	-	-	-			-						-		-	-	-	1		12	-		-	-	-	-	-	-	

Notes:

NSW 2008 General Solid Waste (CT1 - No Leaching) NSW 2008 Restricted Solid Waste (CT2 - No Leaching) Kurnell Landfill EPL other limits for Resource Recovery Waste Storage


 | OCP | | | | | |
 | | | | | | | | | |
 | PAH | 4 | | | | | | | | | PAH/Phen | nols | | Pol | lychlorin
 | nated Bi | iphenyls |
 |
|--|--|---|---|---|---|--|----------------|---|--|--|--
--|---|--
--|--|---|---|--|--|--|---|---
--|--|---|--|---|---
--|---|--|--|--|---|--|--|--|--|--|--|---|---
---|---|--
--|
| | | | | | 2%/kg
4,4-DDE | BHC
mg/kg m | Ndrin
Branc | wy/kg
Chlordane | OH
He
g mg/kg r | a
mg/kg m | lay/ac
w/ac
Dieldrin | Endosulfan I
 | Endosulfan I | w//kg | mg/kg mg | in ann aidenyde
Mill Endrin ketone | ský
BHC (Lindane) | keptachlor | by/kg
avide
a
 | Hex achior obenzene
Mex achior obenzene
Metho xxch lor | /kg mg/kg | Mcenapht hene | u Bx//8u | Anthracene
im Sky/a | Benzo(a)an thiracene
ba | g g g g g g g g g g g g g g g g g g g | Benzo(a)pyrene TEQ (lower bound) *
53
25 | 53/9 Benzo(a)pyrene TEQ (med lum bound) * | Benzo(a)pyrene TEQ (upp er bound) *
 | 25 Benzo(g,h,i)perylene | Benzo(k)fluoranthene
a | 20 Chrysen e
20 Benzolb+i Ifluoranthene | W Dibenz(a,h)anthracene | kg mg/j | kg mg/kj | agy Indeno(1,2,3-c,d)pyrene | Phenanthren e | Byr ene
Wig Wa | mg/kg | a
Say
Carcinogenic PAHs as B(a)P TPE | gtut voice mg | Aroclor 10 | Aroclor 1232 | woclor 1242
 | Moclor 1248 | koclor 1254 | wodor 1260
 |
| | | | | | | | | | 0.05 | 0.05 0 | 0.05 0.05 | 0.05
 | 0.05 | 0.05 | 0.05 0. | 05 0.0 | 5 0.05 | 0.05 | 0.05 0
 | .05 0.3 | 2 1 | 0.5 | 0.5 | 0.5 0 | | | | | | | | | |
 | | | | | | | | | | | 0.0 | | | |
 | | 0.5 |
 |
V 2008 General Solid Waste (0	CT1 - No Leaching)											
 | | | | | | |
 | | | | | | | .8 | | |
 | - | | | | | | | | | | | | | |
 | | |
 |
W 2008 Restricted Solid Waste													
 | | | | | | |
 | | | | | | | .2 | | |
 | | | | | | | | | | | | | | |
 | | |
 |
rnell Landfill EPL other limits fo			ge								
 | | | | | | |
 | | | | | | | | | |
 | | | | | | | | | | 80 | | | 1 | 1 | 1
 | 1 | 1 | 1
 |
 | | | | | | |
 | | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 |
 | | | | | | |
 | | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 |
		Map ID	Soil Colour	Field_ID									
 | | | | | | |
 | | | | | | | | | |
 | | | | | | | | | | | | | | |
 | | |
 |
| 13/05/2015 | \$15-My14517 | BH1_0.5 | brown | MW1_0.5 | <0.05 | <0.05 < | 0.05 <0. | .05 <0.1 | <0.05 | <0.05 < | 0.05 <0.0 | 5 <0.05
 | <0.05 | <0.05 | <0.05 <0 | .05 <0.0 | 0.05 | <0.05 | <0.05 <
 | 1.05 <0. | 1.2 <1 | | <0.5 | | | | 1.4 | |
 | | | 1.2 1. | | | | | | 2.2 | | 1.61 | | 0.5 < | <0.5 | <0.5
 | <0.5 | <0.5 | <0.5
 |
| 13/05/2015
13/05/2015 | S15-My14517
S15-My14519 | BH1_0.5
BH1_2.0 | | | - | - | | | <0.05 | <0.05 <0 | 0.05 <0.0 | 5 <0.05
 | <0.05 | <0.05 | <0.05 <0 | | - | - | -
 | | | | | <0.5 1
0.8 2 | | | | | 1.9 (
3.3 :
 | | 1.2 | | 4 <0.5
2 0.5 | | | | | 2.2
4.6 | | 3.272 | | - | - | -
 | - | - | -
 |
| 13/05/2015
13/05/2015
13/05/2015 | S15-My14517
S15-My14519
S15-My14521 | BH1_0.5
BH1_2.0
BH2B_0.5 | brown | MW1_0.5
MW1_2.0
MW2_0.5 | - | <0.05 <1
-
<0.05 <1 | | | - | - | | -
 | - | <0.05
-
<0.05 | - | | - | - | <0.05 <1
-
<0.05 <1
 | | | <0.5
<0.5 | 0.5 | 0.8 2 | | .1 3 | 3.3 | 3.3 3 | 3.3 :
 | 1.2 | 1.8 | | 2 0.5 | 5 5.2 | < 0.5 | 1.1 | 3.2 | 4.6 | 27 | 3.272
<1.21 | <0 | - | - | -
 | - | <0.5
-
<0.5 | -
 |
| 13/05/2015
13/05/2015
13/05/2015
13/05/2015 | S15-My14517
S15-My14519
S15-My14521
S15-My14522 | BH1_0.5
BH1_2.0
BH2B_0.5
BH2B_1.0 | brown
grey
brown
grey | MW1_0.5
MW1_2.0
MW2_0.5
MW2_1.0 | -
<0.05
- | -
<0.05 <1
- |
0.05 <0. | | <0.05 | <0.05 <0 |
0.05 <0.0 | -
5 <0.05
-
 | -
<0.05
- | -
<0.05
- | -
<0.05 <0
- | .05 <0.0 | 05 <0.05 | -
<0.05
- | -
<0.05 <1
-
 |
1.05 <0.
 |
1.2 <1 | <0.5
<0.5
<0.5 | 0.5
<0.5
<0.5 | 0.8 2
<0.5 <
0.7 1 | 2.3 2
0.5 <0
1.5 1 | .1 3
0.5 < | 3.3
:0.5
2.1 | 3.3 3
0.6 1
2.4 2 | 3.3 :
1.2 <
2.6 (
 | 1.2
(0.5 <
0.7 | 1.8
<0.5
0.8 | 2 1.
0.5 <0.
1.4 2. | 2 0.5
.5 <0.9
1 <0.9 | 5 5.2
5 <0.9
5 3.5 | <0.5
5 <0.5
<0.5 | 1.1
<0.5
0.6 | 3.2
<0.5
2.8 | 4.6
<0.5
3 | 27
<0.5
19 | 3.272
<1.21
2.371 | <0 | -
0.5 <
- | -
<0.5
- | -
<0.5
-
 | -
<0.5
- | -
<0.5
- | -
<0.5
-
 |
| 13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015 | S15-My14517
S15-My14519
S15-My14521
S15-My14522
S15-My14522
S15-My14525 | BH1_0.5
BH1_2.0
BH2B_0.5
BH2B_1.0
BH3A_0.5 | brown
grey
brown | MW1_0.5
MW1_2.0
MW2_0.5
MW2_1.0
MW3_0.5 | -
<0.05
- | - |
0.05 <0. | | <0.05 | <0.05 <0 | | -
5 <0.05
-
 | -
<0.05
- | -
<0.05
- | - | .05 <0.0 | 05 <0.05 | -
<0.05
- | -
<0.05 <1
-
 |
1.05 <0.
 |
1.2 <1 | <0.5
<0.5
<0.5
<0.5 | 0.5
<0.5
<0.5
<0.5 | 0.8 2
<0.5 <1
0.7 1
<0.5 <1 | 2.3 2
0.5 <0
1.5 1
0.5 <0 | .1 3
0.5 <
.6 2
0.5 < | 3.3
(0.5
2.1
(0.5 | 3.3 3
0.6 1
2.4 2
0.6 1 | 3.3 :
1.2 <
2.6 (
1.2 <
 | 1.2
(0.5 <
0.7
(0.5 < | 1.8
<0.5 <
0.8
<0.5 < | 2 1.
0.5 <0
1.4 2.
0.5 <0 | 2 0.5
.5 <0.9
1 <0.9
.5 <0.9 | 5 5.2
5 <0.5
5 3.5
5 <0.5 | <0.5 <0.5 <0.5 <0.5 <0.5 | 1.1
<0.5
0.6
<0.5 | 3.2
<0.5
2.8
<0.5 | 4.6
<0.5
3
<0.5 | 27
<0.5
19
<0.5 | 3.272
<1.21
2.371
<1.21 | <0 | -
0.5 <
- | -
<0.5
- | -
<0.5
-
 | -
<0.5
- | -
<0.5 | -
<0.5
-
 |
| 13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015 | S15-My14517
S15-My14519
S15-My14521
S15-My14522
S15-My14522
S15-My14525
S15-My14526 | BH1_0.5
BH1_2.0
BH2B_0.5
BH2B_1.0
BH3A_0.5
BH3A_1.0 | brown
grey
brown
grey | MW1_0.5
MW1_2.0
MW2_0.5
MW2_1.0 | -
<0.05
-
<0.05
- | - <0.05 |
0.05 <0. | | <0.05
<0.05
<0.05 | -
<0.05 <0
-
<0.05 <0
- |
0.05 <0.0 | -
5 <0.05
-
 | -
<0.05
- | -
<0.05
- | -
<0.05 <0
- | .05 <0.0 | 05 <0.05 | -
<0.05
- | -
<0.05 <1
-
 |
1.05 <0.
 |
1.2 <1 | <0.5
<0.5
<0.5
<0.5 | 0.5
<0.5
<0.5
<0.5 | 0.8 2
<0.5 <
0.7 1 | 2.3 2
0.5 <0
1.5 1
0.5 <0
0.5 <0 | .1 3
0.5 <
0.5 <
0.5 <
0.5 < | 3.3
(0.5
2.1
(0.5 | 3.3 3
0.6 1
2.4 2
0.6 1 | 3.3 :
1.2 <
2.6 (
1.2 <
 | 1.2
(0.5 <
0.7
(0.5 < | 1.8
<0.5 <
0.8
<0.5 < | 2 1.
0.5 <0.
1.4 2. | 2 0.5
.5 <0.9
1 <0.9
.5 <0.9 | 5 5.2
5 <0.5
5 3.5
5 <0.5 | <0.5 <0.5 <0.5 <0.5 <0.5 | 1.1
<0.5
0.6
<0.5 | 3.2
<0.5
2.8
<0.5 | 4.6
<0.5
3 | 27
<0.5
19
<0.5 | 3.272
<1.21
2.371
<1.21
<1.21 | | - 0.5 <
- 0.5 <
0.5 < | -
<0.5
-
<0.5 | -
<0.5
-
 | -
<0.5
- | -
<0.5
- | -
<0.5
-
 |
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	S15-My14517 S15-My14519 S15-My14521 S15-My14522 S15-My14525 S15-My14526 S15-My14528	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH3A_1.0 BH4_0.5	brown grey brown grey brown grey grey grey	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_0.5 MW3_1.0 MW4_0.5	 <0.05 <0.05 <0.05 <0.05 	- (0.05 (1) - (1)	 0.05 <0.	.05 <0.1 .05 <0.1 .05 <0.1	<0.05 <0.05 <0.05	- <0.05 <0 - <0.05 <0 - <0.05 <0	 0.05 <0.0	- 5 <0.05 - 5 <0.05 -	- <0.05 - <0.05 -	- <0.05 <0.05	- <0.05	.05 <0.0 .05 <0.0 .05 <0.0	05 <0.05	- <0.05 - <0.05 -	- <0.05 <1 -	 1.05 <0. 1.05 <0. 	· · 1.2 <1 · · 1.2 <1 · ·	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.8 2 <0.5 <1 0.7 1 <0.5 <1 <0.5 <1 <0.5 <1 26 1	2.3 2 0.5 <0	.1 3 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	3.3 (0.5 (0.5 (0.5) (0.5) (0.5) (12)	3.3 0.6 1 2.4 0.6 1 0.6 1 12	3.3 : 1.2 < 2.6 () 1.2 < 1.2 < 1.2 <td>1.2 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5) (0.</br></br></br></br></br></br></br></br></br></br></br></br></br></br></td> <td>1.8 <0.5 <0.8 <0.5 <0.5 <0.5 <8.4</td> <td>2 1. 0.5 <0 1.4 2. 0.5 <0</td> <td>2 0.5 5 <0.1 1 <0.1 5 <0.1 5 <0.1 1 2.5</td> <td>5 5.2 5 <0.5 5 3.5 5 <0.5 5 <0.5 5 <0.5 5 25</td> <td> <0.5 </td> <td>1.1 <0.5 0.6 <0.5 <0.5 6</td> <td>3.2 <0.5 2.8 <0.5 <0.5 25</td> <td>4.6 <0.5 3 <0.5 <0.5 20</td> <td>27 <0.5 19 <0.5 <0.5 160</td> <td>3.272 <1.21 2.371 <1.21 <1.21 <1.21 12.42</td> <td></td> <td>- 0.5 < - 0.5 < </td> <td>- <0.5 - <0.5</td> <td>- <0.5 - <0.5 -</td> <td>- <0.5 - <0.5 -</td> <td>- <0.5 -</td> <td>- <0.5 <0.5</td>	1.2 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5) 	1.8 <0.5 <0.8 <0.5 <0.5 <0.5 <8.4	2 1. 0.5 <0 1.4 2. 0.5 <0	2 0.5 5 <0.1 1 <0.1 5 <0.1 5 <0.1 1 2.5	5 5.2 5 <0.5 5 3.5 5 <0.5 5 <0.5 5 <0.5 5 25	 <0.5 	1.1 <0.5 0.6 <0.5 <0.5 6	3.2 <0.5 2.8 <0.5 <0.5 25	4.6 <0.5 3 <0.5 <0.5 20	27 <0.5 19 <0.5 <0.5 160	3.272 <1.21 2.371 <1.21 <1.21 <1.21 12.42		- 0.5 < - 0.5 <	- <0.5 - <0.5	- <0.5 - <0.5 -	- <0.5 - <0.5 -	- <0.5 -	- <0.5 <0.5
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	S15-My14517 S15-My14519 S15-My14521 S15-My14522 S15-My14525 S15-My14526 S15-My14528 S15-My14528 S15-My14529	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH3A_1.0	brown grey brown grey brown grey	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_0.5 MW3_1.0	 <0.05 <0.05 <0.05 <0.05 	- (0.05 (1) - (1)		.05 <0.1 .05 <0.1 .05 <0.1 	 <0.05 <0.05 <0.05 <0.05 <0.05 	- <0.05 <0 - <0.05 <0 -	 0.05 <0.0 0.05 <0.0 	- 5 <0.05 - 5 <0.05 -	- <0.05 - <0.05 -	- <0.05 <0.05	- <0.05	.05 <0.0 .05 <0.0 .05 <0.0	- 05 <0.05 - 05 <0.05 -	- <0.05 - <0.05 -	- (0.05 <) - (0.05 <) - (0.05 <)	 1.05 <0. 1.05 <0. 	 1.2 <1 1.2 <1 1.2 <1 	<0.5 <0.5 <0.5 <0.5 <0.5	0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.8 2 <0.5 <1 0.7 1 <0.5 <1 <0.5 <1	2.3 2 0.5 <0	.1 3 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	3.3 (0.5 (0.5 (0.5) (0.5) (0.5) (12)	3.3 0.6 1 2.4 0.6 1 0.6 1 12	3.3 : 1.2 < 2.6 () 1.2 < 1.2 < 1.2 <td>1.2 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5) (0.</br></br></br></br></br></br></br></br></br></br></br></br></br></br></td> <td>1.8 <0.5 <0.8 <0.5 <0.5</td> <td>2 1. 0.5 <0 1.4 2. 0.5 <0 0.5 <0 1.1 9.</td> <td>2 0.5 .5 <0.9 1 <0.9 .5 <0.9 .5 <0.9</td> <td>5 5.2 5 <0.5 5 3.5 5 <0.5 5 <0.5 5 <0.5 5 25</td> <td> <0.5 </td> <td>1.1 <0.5 0.6 <0.5 <0.5 6</td> <td>3.2 <0.5 2.8 <0.5 <0.5 25</td> <td>4.6 <0.5 3 <0.5 <0.5</td> <td>27 <0.5 19 <0.5 <0.5 160</td> <td>3.272 <1.21 2.371 <1.21 <1.21</td> <td></td> <td>- 0.5 <1 - 0.5 <1 - 0.5 <1 0.5 <1</td> <td>- <0.5 - <0.5 - <0.5</td> <td>- <0.5 - <0.5 - <0.5</td> <td>- <0.5 - <0.5 -</td> <td>- <0.5 - <0.5 - <0.5</td> <td>- <0.5 <0.5</td>	1.2 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5) 	1.8 <0.5 <0.8 <0.5 <0.5	2 1. 0.5 <0 1.4 2. 0.5 <0 0.5 <0 1.1 9.	2 0.5 .5 <0.9 1 <0.9 .5 <0.9 .5 <0.9	5 5.2 5 <0.5 5 3.5 5 <0.5 5 <0.5 5 <0.5 5 25	 <0.5 	1.1 <0.5 0.6 <0.5 <0.5 6	3.2 <0.5 2.8 <0.5 <0.5 25	4.6 <0.5 3 <0.5 <0.5	27 <0.5 19 <0.5 <0.5 160	3.272 <1.21 2.371 <1.21 <1.21		- 0.5 <1 - 0.5 <1 - 0.5 <1 0.5 <1	- <0.5 - <0.5 - <0.5	- <0.5 - <0.5 - <0.5	- <0.5 - <0.5 -	- <0.5 - <0.5 - <0.5	- <0.5 <0.5
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	S15-My14517 S15-My14519 S15-My14521 S15-My14522 S15-My14522 S15-My14526 S15-My14528 S15-My14529 S15-My14531	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH3A_1.0 BH4_0.5 BH4_1.0 BH6_0.1	brown grey brown grey brown grey grey grey	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_0.5 MW3_1.0 MW4_0.5	<0.05 - <0.05 - <0.05 - <0.05 -	- (0.05 (1) - (1)		05 <0.1 05 <0.1 05 <0.1	 <0.05 <0.05 <0.05 <0.05 <0.05 	<0.05 <1 	0.05 <0.0 0.05 <0.0 0.05 <0.0 0.05 <0.0	5 <0.05 - 5 <0.05 - 5 <0.05 5 <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 - <0.05 - <0.05	- (0.05) - (0.05) - (0.05) - (0.05) - (0.05) - (0.05)	.05 <0.0 .05 <0.0 .05 <0.0 .05 <0.0	05 <0.05 - 05 <0.05 - 05 <0.05 - 05 <0.05	<0.05 <0.05 <0.05 <0.05	 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <1 	· · · 1.05 <0. · · · 1.05 <0. · · · 1.05 <0. · ·	 .2 <1 .2 <1 	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 <0.5 <0.5 <0.5 <0.5 4.1 1.3	0.8 2 <0.5 <1 <0.7 1 <0.5 <1 <0.5 <1 <0.5 <1 26 1 1.7 3	2.3 2 0.5 <0	.1 3 0.5 < 0.5 <b0.5 <b0.5="" <b0<="" td=""><td>3.3 (0.5 (0.5 (0.5) (0.5) (0.5) (12) (3.1)</td><td>3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 0.6 1 12 3 3.3 3</td><td>3.3 1 1.2 <</td> 2.6 0 1.2 <</b0.5>	3.3 (0.5 (0.5 (0.5) (0.5) (0.5) (12) (3.1)	3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 0.6 1 12 3 3.3 3	3.3 1 1.2 <	1.2 (0.5 < (0.5 < (0.5 < (0.5 < (0.5 < (0.1) 1.8	1.8 <0.5	2 1. 0.5 <0 1.4 2. 0.5 <0 0.5 <0 1.1 9.	2 0.5 5 <0.9 1 <0.9 5 <0.9 5 <0.9 1 2.5 8 <0.9	5 5.2 5 <0.5 5 3.5 5 <0.5 5 <0.5 5 <0.5 5 25 5 8.4	 <0.5 	1.1 <0.5 0.6 <0.5 <0.5 6 1.7	3.2 <0.5 2.8 <0.5 <0.5 25	4.6 <0.5 3 <0.5 <0.5 20	27 <0.5 19 <0.5 <0.5 160 42	3.272 <1.21 2.371 <1.21 <1.21 <1.21 12.42		- 0.5 <1 - 0.5 <1 - 0.5 <1 - 0.5 <1 - 1	- <0.5 - <0.5 - <0.5 -	- <0.5 - <0.5 - <0.5 -	- <0.5 - <0.5 - <0.5 -	- <0.5 - <0.5 - <0.5	<0.5 - <0.5 - <0.5 -
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	S15-My14517 S15-My14519 S15-My14521 S15-My14522 S15-My14522 S15-My14525 S15-My14526 S15-My14528 S15-My14531 S15-My14531	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH4A_1.0 BH4_0.5 BH4_0.1 BH6_0.1 BH6_0.3	brown grey brown grey brown grey grey brown	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_0.5 MW3_1.0 MW4_0.5 MW4_0.5 MW4_0.10 HA5_0.1	 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	- 40.05 <1 - 40.05 <1 - 40.05 <1 - 40.05 <1 - 40.05 <1 - 40.05 <1 - 40.05 <1		05 <0.1 05 <0.1 05 <0.1 05 <0.1 05 <0.1	 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	- (0.05 (1) - (1) <0.05 (1) - (1) <0.05 (1) - (1) <0.05 (1) - (1)	 0.05 <0.0 0.05 <0.0 0.05 <0.0 0.05 <0.0 	5 <0.05 - 5 <0.05 - 5 <0.05 - 5 <0.05 - 5 <0.05																																			
 | <0.05
<0.05
<0.05
<0.05
<0.05 | <0.05
-
<0.05
-
<0.05
-
<0.05
-
<0.05
- | - (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0) | | | <0.05
<0.05
<0.05
<0.05
<0.05 |
 |
1.05 <0.

1.05 <0.

1.05 <0.

1.05 <0.

1.05 <0.
 | · · ·
1.2 <1
· · · | <0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5 | 0.5
<0.5
<0.5
<0.5
<0.5
4.1
1.3
<0.5
<0.5 | 0.8 2
<0.5 <1
0.7 1
<0.5 <1
<0.5 <1
<0.5 <1
26 1
1.7 3 | 2.3 2 0.5 <0 | .1 3
.5 <
.6 2
.5 <
.2
.1 3
.5 <
.2
.1 3
.5 <
.3 12 | 3.3
(0.5
2.1
(0.5
(0.5
12
3.1
(0.5
1.7 | 3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 0.6 1 12 2 3.3 3 0.7 1 | 3.3 1 1.2 <
 | 1.2
(0.5 <
(0.5 <
(0.5 <
(0.5 <
6.1
1.8
(0.5
0.8 | 1.8 <0.5 | 2 1.:
0.5 <0.
1.4 2.:
0.5 <0.
0.5 <0.
11 9.:
3.3 1.: | 2 0.5
5 <0.9
1 <0.9
5 <0.9
1 2.5
8 <0.9
6 <0.9 | 5 5.2
5 <0.5
5 3.5
5 <0.5
5 <0.5
5 <0.5
5 25
5 8.4
5 1 | <0.5 | 1.1
<0.5
0.6
<0.5
<0.5
6
1.7
<0.5 | 3.2
<0.5
2.8
<0.5
<0.5
25
6
<0.5 | 4.6
<0.5
3
<0.5
<0.5
20
6.8 | 27
<0.5
19
<0.5
<0.5
160
42
4.2 | 3.272
<1.21
2.371
<1.21
<1.21
12.42
3.341
0.7025
1.948 | 0> | - 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 1 | | -
<0.5
<0.5
<0.5
<0.5
 | - 0.5
- (0.5
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5) | -
<0.5
<0.5
<0.5
<0.5 | - (0.5
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
 |
| 13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015 | S15-My14517
S15-My14519
S15-My14521
S15-My14525
S15-My14525
S15-My14525
S15-My14528
S15-My14528
S15-My14528
S15-My14538
S15-My14538
S15-My14538 | BH1_0.5 BH1_0.5 BH2_0.5 BH28_1.0 BH3A_0.5 BH3A_1.0 BH4_0.5 BH4_1.0 BH6_0.1 BH6_0.3 BH7_0.2 | brown
grey
brown
grey
brown
grey
grey
brown
brown | MW1.0.5
MW1.2.0
MW2.0.5
MW2.1.0
MW3.0.5
MW3.1.0
MW4.0.5
MW4.1.0
HA5_0.1 | <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | - (0.05 (1)
- (1) | | 05 <0.1
05 <0.1
05 <0.1
05 <0.1
05 <0.1 | <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 | - (0.05 (1)
- (1)
<0.05 (1)
- (1)
<0.05 (1)
- (1)
<0.05 (1)
- (1) | 0.05 <0.0

0.05 <0.0

0.05 <0.0

0.05 <0.0 | 5 <0.05
-
5 <0.05
-
5 <0.05
-
5 <0.05
-
5 <0.05 | <0.05
<0.05
<0.05
<0.05
<0.05 | <0.05
-
<0.05
-
<0.05
-
<0.05
-
<0.05
- | - (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0) | | | <0.05
<0.05
<0.05
<0.05
<0.05 | |
1.05 <0.

1.05 <0.

1.05 <0.

1.05 <0.

1.05 <0.
 | · · ·
1.2 <1
· · · | <0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5 | 0.5
<0.5
<0.5
<0.5
<0.5
4.1
1.3
<0.5
<0.5 | 0.8 2
<0.5 <1
0.7 1
<0.5 <1
<0.5 <1
26 1
1.7 3
<0.5 0 | 2.3 2 0.5 <0 | .1 3
.5 <
.6 2
.5 <
.2
.1 3
.5 <
.2
.1 3
.5 <
.3 12 | 3.3
(0.5
(0.5
(0.5)
(0.5)
(12)
(0.5)
(0.5)
(1.7) | 3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 12 3 3.3 3 0.7 1 1.9 2 0.6 1 | 3.3 : 1.2 < | 1.2
(0.5
(0.5
(0.5
(0.5
(0.5
(0.5
(0.5
(0.5
(0.5
(0.5
(0.5
(0.5)
(0.5
(0.5
(0.5)
(0.5
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5 | 1.8 <0.5 | 2 1.:
:0.5 <0.
1.4 2.:
:0.5 <0.
:0.5 <0.
11 9.:
3.3 1.:
0.5 0.: | 2 0.5
5 <0.9
1 <0.9
5 <0.9
1 2.5
8 <0.9
6 <0.9
9 <0.9 | 5 5.2
5 <0.5
5 3.5
5 <0.5
5 <0.5
5 <0.5
5 25
5 8.4
5 1
5 1.8 | <0.5 | 1.1
<0.5
0.6
<0.5
6
1.7
<0.5
0.7 | 3.2
<0.5
2.8
<0.5
<0.5
25
6
<0.5
0.5 | 4.6
<0.5
3
<0.5
<0.5
20
6.8
1
1.8 | 27
<0.5
19
<0.5
<0.5
160
42
4.2
11 | 3.272
<1.21
2.371
<1.21
<1.21
12.42
3.341
0.7025 | 0> | - 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 1 | | -
<0.5
<0.5
<0.5
<0.5 | - 0.5
- (0.5
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5) | -
<0.5
<0.5
<0.5
<0.5 | - (0.5
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5) |
| 13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015
13/05/2015 | \$15-My14517
\$15-My14519
\$15-My14521
\$15-My14521
\$15-My14525
\$15-My14525
\$15-My14528
\$15-My14528
\$15-My14528
\$15-My14531
\$15-My14532
\$15-My14533 | BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_1.0 BH3A_1.0 BH4_0.5 BH4_0.5 BH4_0.5 BH4_0.5 BH4_1.0 BH6_0.1 BH6_0.3 BH7_0.2 BH7_0.5 | brown
grey
brown
grey
brown
grey
grey
brown
brown
brown | MW1.0.5
MW2.0.5
MW2.1.0
MW3_0.5
MW3_0.5
MW3_0.5
MW4_0.5
MW4_0.5
MW4_1.0
HA5_0.1
HA5_0.1
HA5_0.2
HA6_0.5 | <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 | - 40.05 <1
- 40.05 <1
- 40.05 <1
- 40.05 <1
- 40.05 <1
- 40.05 <1
- 40.05 <1 | | 05 <0.1
05 <0.1
05 <0.1
05 <0.1
05 <0.1 | <0.05 | - (0.05 (1)
- (1)
<0.05 (1)
- (1)
<0.05 (1)
- (1)
<0.05 (1)
- (1) |
0.05 <0.0

0.05 <0.0

0.05 <0.0

0.05 <0.0
 | 5 <0.05
-
5 <0.05
-
5 <0.05
-
5 <0.05
-
5 <0.05
 | <0.05
<0.05
<0.05
<0.05
<0.05 | <0.05
-
<0.05
-
<0.05
-
<0.05
-
<0.05
- | - (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0
- (0.05 <0) | | | <0.05
<0.05
<0.05
<0.05
<0.05 | - (0.05 <1
- (0.05 <1
- (0.05 <1
- (0.05 <1
- (0.05 <1
- (0.05 <1
- (0.05 <1)
 |
1.05 <0.

1.05 <0.

1.05 <0.

1.05 <0.

1.05 <0.
 | . . 1.2 <1 | <0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5 | 0.5 <0.5 | 0.8 2
<0.5 <1
0.7 1
<0.5 <1
<0.5 <1
26 1
1.7 3
<0.5 0
<0.5 1 | 2.3 2 0.5 <0 | .1 3
0.5 <
.6 2
0.5 <
.2
.1 3
0.5 <
.3 2
0.5 < | 3.3
(0.5
2.1
(0.5
(0.5
12
3.1
(0.5
1.7
(0.5 | 3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 12 3 3.3 3 0.7 1 1.9 2 0.6 1 | 3.3 1 1.2 <
 | 1.2
(0.5
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.8)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5) | 1.8 <0.5 | 2 1.:
0.5 <0.
1.4 2.:
0.5 <0.
0.5 <0.
11 9.:
3.3 1.:
0.5 0.:
1 0.5 | 2 0.5
5 <0.1
1 <0.1
5 <0.1
1 2.5
8 <0.1
6 <0.1
9 <0.1
5 <0.1 | 5 5.2
5 <0.5
5 3.5
5 <0.5
5 <0.5
5 <0.5
5 25
5 8.4
5 1
8
5 1.8
5 0.6 | <0.5 | 1.1
<0.5
0.6
<0.5
<0.5
6
1.7
<0.5
0.7
<0.5 | 3.2
<0.5
2.8
<0.5
<0.5
25
6
<0.5
0.5
<0.5 | 4.6
<0.5
3
<0.5
<0.5
20
6.8
1
1.8 | 27
<0.5
19
<0.5
<0.5
160
42
4.2
11
1.2 | 3.272
<1.21
2.371
<1.21
12.42
3.341
0.7025
1.948
<1.21
2.424 | 0>
0>
0>
0>
0>
0>
0>
0>
0>
0> | - 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 0.5 <1
- 1 | <0.5
 | -
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
 | - 0.5
- (0.5
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5) | -
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
<0.5
-
-
<0.5
-
-
-
-
-
-
-
-
-
-
-
-
- | - (0.5
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
- (0.5)
 |
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	\$15-My14517 \$15-My14519 \$15-My14521 \$15-My14521 \$15-My14525 \$15-My14525 \$15-My14528 \$15-My14528 \$15-My14528 \$15-My14531 \$15-My14532 \$15-My14533	BH1_0.5 BH1_0.5 BH2_0.5 BH28_1.0 BH3A_0.5 BH3A_1.0 BH4_0.5 BH4_1.0 BH6_0.1 BH6_0.3 BH7_0.2	brown grey brown grey brown grey grey brown brown brown	MW1_0.5 MW1_2.0 MW2_0.5 MW3_0.5 MW3_1.0 MW4_1.0 MW4_1.0 HA5_0.1 HA5_0.2	 <0.05 . 	- (0.05 <) - (0.05 <)		05 <0.1 05 <0.1 05 <0.1 05 <0.1 05 <0.1	 <0.05 	- (0.05 (1 - (1 <0.05 (1 - (1) <0.05 (1 - (1) <0.05 (1) - (1)	 0.05 <0.0 0.05 <0.0 0.05 <0.0 0.05 <0.0 	5 <0.05 - 5 <0.05 - 5 <0.05 - 5 <0.05 - 5 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 - <0.05 - <0.05 - <0.05 - <0.05 -	- (0.05 <0 - (0.05 <0 - (0.05 <0 - (0.05 <0 - (0.05 <0 - (0.05 <0 - (0.05 <0)			<0.05 	- (0.05 <1 - (0.05 <1 - (0.05 <1 - (0.05 <1 - (0.05 <1 - (0.05 <1 - (0.05 <1)	 1.05 <0. 1.05 <0. 1.05 <0. 1.05 <0. 1.05 <0. 1.05 <0. 1.05 <0. 	. . 1.2 <1	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 <0.5	0.8 2 <0.5 <1 0.7 1 <0.5 <1 <0.5 <1 26 1 1.7 3 <0.5 0 <0.5 1 <0.5 <1 <0.5 <0 <0.5 <0 <0 <0.5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	2.3 2 0.5 <0	.1 3 .5 <	3.3 (0.5 2.1 (0.5 (0.5 12 3.1 (0.5 1.7 (0.5 2.2 2.2	3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 12 3 0.7 1 1.9 2 0.6 1 2.4 2	3.3 : 1.2 <	1.2 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5) (0.5 (0.5) (0.5 (0.5) (0.5	1.8 <0.5	2 1 20.5 <0.	2 0.5 5 <0.1	5 5.2 5 <0.3 5 3.5 5 <0.3 5 <0.3 5 <0.5 5 <0.5 5 8.4 5 1.8 5 0.6 5 2.8	 <0.5 	1.1 <0.5 0.6 <0.5 <0.5 6 1.7 <0.5 0.7 <0.5 0.7 <0.5	3.2 <0.5 2.8 <0.5 25 6 <0.5 0.5 <0.5 <0.5 <1.3	4.6 <0.5 3 <0.5 20 6.8 1 1.8 0.6	27 <0.5 19 <0.5 <0.5 160 42 4.2 11 1.2 15	3.272 <1.21 <1.21 <1.21 <1.21 12.42 3.341 0.7025 1.948 <1.21	0> 0> 0> 0> 0> 0> 0> 0>	- 0.5 <1 	<0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 -	- <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - - <0.5 - - - - - - - - - - - - -	<0.5 - <0.5 - <0.5 - <0.5 - <0.5 -	 <0.5 	- (0.5 - (0.5) - (0.5) - (0.5) - (0.5) - (0.5) - (0.5)
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	\$15-My14517 \$15-My14519 \$15-My14521 \$15-My14522 \$15-My14525 \$15-My14525 \$15-My14528 \$15-My14528 \$15-My14528 \$15-My14538 \$15-My14533 \$15-My14533 \$15-My14533	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH3A_1.0 BH4_1.0 BH6_0.1 BH6_0.3 BH7_0.2 BH8_0.1 BH8_0.3	brown grey brown grey brown grey grey brown brown brown brown brown	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 HA5_0.1 HA5_0.2 HA6_0.5 HA7_0.3	 <0.05 . 	- 40.05 <1 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40		05 <0.1 05 <0.1 05 <0.1 05 <0.1 05 <0.1	 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	 <0.05 <1 <0.05 <0.0	 0.05 <0.0 0.05 <0.0 0.05 <0.0 0.05 <0.0 	 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 -	 <0.05 <0.05 <0.05 <0.05 <0.05 	- <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - -	 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0 <0.05 <0 <0 <0.05 <0 <li< td=""><td></td><td></td><td>- - - - - - - - - - - - - - - - - - -</td><td>- (0.05 (d) - (d)</td><td></td><td>. . 1.2 <1</td> . . 1.2 <1</li<>			- - - - - - - - - - - - - - - - - - -	- (0.05 (d) - (d)		. . 1.2 <1	 <0.5 	0.5 <0.5	0.8 2 <0.5	2.3 2 0.5 <0	.1 3 0.5 <	3.3 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.5 :0.4 :0.5	3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 12 3 3.3 3 0.7 1 1.9 2 0.6 1 2.4 2 1.7 1	3.3 2 1.2 <	1.2 (0.5 (0.7 (0.5)	1.8 <0.5	2 1 00.5 <00	2 0.5 5 <0.9	5 5.2 5 3.5 5 3.5 5 25 5 25 5 25 5 1 5 1.8 5 0.6 5 2.8 5 2.8 5 2.8	<	1.1 <0.5	3.2 <0.5 2.8 <0.5 25 6 <0.5 0.5 <0.5 <0.5 1.3 0.7	4.6 <0.5 3 <0.5 20 6.8 1 1.8 0.6 2.6	27 <0.5 19 <0.5 <0.5 160 42 4.2 11 1.2 15 12	3.272 <1.21 2.371 <1.21 12.42 3.341 0.7025 1.948 <1.21 2.424 1.69 3.984	0> 0> 0> 0> 0> 0> 0> 0> 0> 0> 0> 0>	- 0.5 <1 - 0	<0.5 - - - <0.5 - - <0.5 - - - <0.5 - - - - - - - - - - - - - - - - - - -	 <0.5 <li< td=""><td><0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - - <0.5</td><td>- (0.5 - (0.5 - (0.5) - (0.5)</td><td> <0.5 <0.5 <0.5 </td></li<>	<0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - - <0.5	- (0.5 - (0.5 - (0.5) - (0.5)	 <0.5 <0.5 <0.5
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	\$15-My14517 \$15-My14519 \$15-My14521 \$15-My14522 \$15-My14522 \$15-My14525 \$15-My14528 \$15-My14528 \$15-My14531 \$15-My14533 \$15-My14533 \$15-My14539 \$15-My14539 \$15-My14540	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH3A_1.0 BH4_1.0 BH4_1.0 BH6_0.1 BH7_0.2 BH7_0.3 BH8_0.1 BH8_0.3 BH9_0.2	brown grey brown grey grey grey grey brown brown brown brown brown	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_0.5 MW3_0.5 MW4_0.5 MW4_1.0 MW4_0.5 MW4_0.5 MW4_0.5 HA5_0.1 HA5_0.2 HA6_0.5 HA7_0.1	 <0.05 <0.05 <0.05 <0.05 <0.05 	- 40.05 <1 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40			 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	 <0.05 <1 <0.05 <0.0	 0.05 <0.0 0.05 <0.0 0.05 <0.0 0.05 <0.0 	 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 -	 <0.05 <0.05 <0.05 <0.05 <0.05 	- <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - -	 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0 <0.05 <0 <0 <0.05 <0 <li< td=""><td></td><td></td><td>- - - - - - - - - - - - - - - - - - -</td><td>- (0.05 (d) - (d)</td><td></td><td>. . 1.2 <1</td> . . 1.2 <1</li<>			- - - - - - - - - - - - - - - - - - -	- (0.05 (d) - (d)		. . 1.2 <1	<0.5	0.5 <0.5	0.8 2 <0.5	2.3 2 0.5 <0	.1 3 .5 <	3.3	3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 12 3 3.3 3 0.7 1 1.9 2 0.6 1 2.4 2 1.7 1 4 4	3.3 2 1.2 <	1.2 :0.5 :0.7 :0.5 :0.5 :0.5 :0.8 :0.5 :0.8 :0.5 :1 1 2.6	1.8 <0.5	2 1 0.0.5 <0.	2 0.5 5 <0.9	5 5.2 5 3.5 5 3.5 5 3.5 5 <0.1	<	1.1 <0.5	3.2 <0.5 2.8 <0.5 25 6 <0.5 <0.5 <0.5 <0.5 <0.5 1.3 0.7 2.8	4.6 <0.5 3 <0.5 20 6.8 1 1.8 0.6 2.6 2	27 <0.5 19 <0.5 <0.5 160 42 4.2 11 1.2 15 12 30	3.272 <1.21 2.371 <1.21 12.42 3.341 0.7025 1.948 <1.21 2.424 1.69		- 0.5 <1 - 0.5 <1	<0.5 - - - - - - - - - - - - - - - - - - -	 	<0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - - <0.5 - - <0.5 - - <0.5 - - - - - - - - - - - - - - - - - - -	 <td> <0.5 </td>	 <0.5
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	\$15-My14517 \$15-My14519 \$15-My14521 \$15-My14521 \$15-My14522 \$15-My14526 \$15-My14528 \$15-My14528 \$15-My14528 \$15-My14538 \$15-My14538 \$15-My14538 \$15-My14533 \$15-My14533 \$15-My14534 \$15-My14534 \$15-My14534 \$15-My14534	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH3A_1.0 BH4_1.0 BH6_0.1 BH6_0.3 BH7_0.2 BH8_0.1 BH8_0.3	brown grey brown grey brown grey grey brown brown brown brown brown brown	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 MW4_0.5 HA5_0.1 HA5_0.2 HA6_0.5 HA7_0.3	 <0.05 	 <0.05 <1 <0.05 			· · · · · · · · · · · · · · · · · · ·	 <0.05 		5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 - 5 <0.05 - - 5 <0.05 - 5 <0.05 -		 <0.05 . <0.05 . <0.05 . <0.05 . <0.05 . . <0.05 . <0.05 <0.05 	 <0.05 				- 0.05 <1 - 0.05		. . 12 <1	 <0.5 	0.5 <0.5	0.8 2 <0.5	2.3 2 0.5 <	.1 .3 .6 .2 .0.5 <	3.3 3.3 30.5 2.1 30.5 3.0 30.5 3.1 30.5 3.1 30.5 3.1 30.5 3.1 30.5 3.1 30.5 3.1 30.5 3.1 30.5 3.1 30.5 3.1 30.5 3.1 30.7 1.4	3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 12 3 3.3 3 0.7 1 1.9 2 0.6 1 2.4 2 1.19 2 0.6 1 2.4 2 1.7 1 4 4	3.3 :: 1.2 <	1.2 :0.5 :0.7 :0.5 :0.5 :0.5 :0.8 :0.5 :0.8 :0.5 :1 1 2.6	1.8 <0.5	2 1 10.5 <0.	2 0.5 5 <0.9	5 5.2 5 <0.9	: <0.5	1.1 <0.5	3.2 <0.5 2.8 <0.5 25 6 <0.5 <0.5 <0.5 <0.5 1.3 0.7 2.8 0.6	4.6 <0.5 3 <0.5 20 6.8 1 1.8 0.6 2.6 2 0.6	27 <0.5 19 <0.5 <0.5 160 42 4.2 11 1.2 15 12 30 11	3.272 <1.21 2.371 <1.21 (1.21 12.42 3.341 0.7025 1.948 <1.21 2.424 1.69 3.984 1.64 1.315		- 0.5 <1 - 0.5 <1 0.5 <1 - 0.5 <1	 <0.5 <0.5 <0.5 <0.5 <0.5 <	- - - - - - - - - - - - - -	 <0.5 	- - <0.5	 <0.5
13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015 13/05/2015	\$15-My14517 \$15-My14519 \$15-My14521 \$15-My14522 \$15-My14522 \$15-My14525 \$15-My14528 \$15-My14528 \$15-My14531 \$15-My14533 \$15-My14533 \$15-My14539 \$15-My14539 \$15-My14540	BH1_0.5 BH1_2.0 BH2B_0.5 BH2B_1.0 BH3A_0.5 BH3A_1.0 BH4_1.0 BH4_1.0 BH6_0.1 BH7_0.2 BH7_0.3 BH8_0.1 BH8_0.3 BH9_0.2	brown grey brown grey brown grey brown brown brown brown brown grey / brown	MW1_0.5 MW1_2.0 MW2_0.5 MW2_1.0 MW3_1.0 MW3_1.0 MW4_0.5 MW4_1.0 HA5_0.1 HA5_0.1 HA5_0.2 HA6_0.5 HA7_0.3 HA7_0.3 HA8_0.2	 <0.05 	 <0.05 <1 <0.05 			 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	 <0.05 		5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 - 5 <0.05 - - 5 <0.05 - 5 <0.0		 <0.05 . <0.05 . <0.05 . <0.05 . <0.05 . . <0.05 . . <0.05 <0.05 	 <0.05 				- 0.05 <1 - 0.05		. . 12 <1	<0.5	0.5 <0.5	0.8 2 <0.5	2.3 2 0.5 <0	.1 .3 .5.5 <	3.3	3.3 3 0.6 1 2.4 2 0.6 1 0.6 1 12 3.3 3.3 3 0.6 1 1.9 2 0.6 1 1.9 2 1.7 1 4 4 1.6 1 1.3 1	3.3 : 1.2 <	1.2 00.5 <	1.8 <0.5	2 1.: :0.5 <0.	2 0.5 5 <0.9	5 5.2 5 <0.9	: <0.5	1.1 <0.5	3.2 <0.5 2.8 <0.5 25 6 <0.5 <0.5 <0.5 <0.5 <0.5 1.3 0.7 2.8 0.6 0.7	4.6 <0.5 3 <0.5 20 6.8 1 1.8 0.6 2.6 2 0.6 2	27 <0.5 19 <0.5 <0.5 160 42 4.2 11 1.2 15 12 30 11 7.1	3.272 <1.21 2.371 <1.21 12.42 3.341 0.7025 1.948 <1.21 2.424 1.69 3.984 1.64		- 0.5 <1 - 0.5 <1 0.5 <1 - 0.5 <1	 <0.5 <0.5 <0.5 <0.5 <0.5 <	- - - - - - - - - - - - - -	 <0.5 	 <td>- - <0.5</td> - <0.5	- - <0.5

Notes:

Surry Hills_Tables.xlsx , 18/06/2015

LocCode Sampled_Date-Time	 SampleCode 	Map ID	Soil Colour	Field_ID																																			
13/05/2015	S15-My14517	BH1_0.5	brown	MW1_0.5	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-		-	-	-	-	-		-		-		-		-	-	-	-	-
13/05/2015	S15-My14519	BH1_2.0	grey	MW1_2.0	· ·	-	-	-	-	-	-	-	-	-	-	-	-	-	· ·	-		-	-	-	-	-	-	-			-		-	-	1 - 1	1 - 1	1 - 1	1 · I	· ·
13/05/2015	S15-My14521	BH2B_0.5	brown	MW2_0.5		-	-	-	-	-			-	-	-	-	-			-	-		-	-	-		-			-	-	-	-	-	-	-	-	-	-
13/05/2015	S15-My14522	BH2B_1.0	grey	MW2_1.0		-	-	-	-	-		-	-	-			-	-		-		-	-	-	-	-	-						-		-	-	-	· · ·	
13/05/2015	S15-My14525	BH3A_0.5	brown	MW3_0.5		-	-	-	-	-		-	-	-	-	-	-			-	-	-	-	-	-		-			-	-	-	-	-	· · ·	· · ·	· · ·	· · ·	-
13/05/2015	S15-My14526	BH3A_1.0	grey	MW3_1.0		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	· · ·	-	-	-	
13/05/2015	\$15-My14528	BH4 0.5	grey	MW4 0.5		-		-		-			-	-	-					-		-	-	-							-				· · ·	· · ·	· · ·	· · ·	
13/05/2015	S15-My14529	BH4_1.0	brown	MW4_1.0		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	· · ·	-	-	-	-
13/05/2015	S15-My14531	BH6 0.1	brown	HA5_0.1		-		-	-	-			-	-	-	-				-		-	-	-	-		-			-	-					-		1	
14/05/2015	\$15-My14538	BH6_0.3	brown	HA5 0.3		-	-	-	-	-			-	-	-	-	-			-		-	-	-	-		-	-		-	-			-	· · ·	-	· · ·		
13/05/2015	S15-My14532		brown	HA6 0.2		-		-	-	-			-	-	-	-				-		-	-	-	-		-			-	-				-	-	-	-	
13/05/2015	S15-My14533	BH7 0.5	brown	HA6 0.5		-	-	-	-	-		-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	-	-	-		-	-	-	-	
13/05/2015	S15-My14534	BH8_0.1	brown	HA7_0.1		-	-	-	-	-			-	-	-	-	-			-		-	-	-	-		-	-		-	-			-	· · ·	· · ·	· · ·		
14/05/2015	S15-My14539		brown	HA7 0.3		-		-	-	-			-	-	-	-				-		-	-	-	-		-			-	-							1	
13/05/2015	S15-My14540	BH9 0.2	grey / brown	HA8 0.2		-	-	-	-	-		-	-	-	-	-	-			-	-	-	-	-	-	-	-			-	-	-	-		-	-	-	-	
29/05/2015	\$15-My26640	BH10_1.0	brown	BH10 1.0		-	-	-	-	-			-	-	-	-	-			-		-	-	-	-		-	-		-	-			-	· · ·	· · ·	· · ·	-	
29/05/2015	\$15-My26641		brown	BH10 2.0		-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-		
29/05/2015	S15-My26642	BH10_3.0	residual	BH10_3.0	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<7	<6.5

Notes

EQL NSW 2008 General Solid Waste (CT1 - No Leaching) NSW 2008 Restricted Solid Waste (CT2 - No Leaching) Kurnell Landfill EPL other limits for Resource Recovery Waste Storage

NSW 2008 General Solid Waste (CT1 - No Leaching) NSW 2008 Restricted Solid Waste (CT2 - No Leaching) Kurnell Landfill EPL other limits for Resource Recovery W

Table 4 Soil Leachability Analytical Results Waste Classification Criteria

]	<u>.</u>				Delizo(a)pyrene	
	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg
EQL	0.01	5	0.01	5	0.001	0.5	0.001	0.5
NSW 2008 General Solid Waste (SCC1 & TCLP1 - Leaching)	5	1500			0.04	10		
NSW 2008 Restricted Solid Waste (SCC2 & TCLP2 - Leaching)			20	6000			0.16	23

LocCode	Sampled_Date-Tin	ne	SampleCode	Field_ID								
	13/05/2015	BH1_0.5	S15-My14517	MW1_0.5	1	890	1	890	< 0.001	0.9	< 0.001	0.9
	13/05/2015	BH1_2.0	S15-My14519	MW1_2.0	0.11	250	0.11	250	< 0.001	2.1	< 0.001	2.1
	13/05/2015	BH2B_1.0	S15-My14522	MW2_1.0	-	81	-	81	< 0.001	1.6	< 0.001	1.6
	13/05/2015	BH4_0.5	S15-My14528	MW4_0.5	0.08	180	0.08	180	< 0.001	6.2	< 0.001	6.2
	13/05/2015	BH4_1.0	S15-My14529	MW4_1.0	-	100	-	100	< 0.001	2.1	< 0.001	2.1
	13/05/2015	BH6_0.1	S15-My14531	HA5_0.1	0.02	130	0.02	130	-	<0.5	-	<0.5
	13/05/2015	BH7_0.5	S15-My14533	HA6_0.5	0.05	120	0.05	120	< 0.001	1.7	< 0.001	1.7
	13/05/2015	BH8_0.1	S15-My14534	HA7_0.1	0.14	370	0.14	370	< 0.001	1	< 0.001	1
	13/05/2015	BH9_0.2	S15-My14540	HA8_0.2	-	97	-	97	< 0.001	1	< 0.001	1
	14/05/2015	BH6_0.3	S15-My14538	HA5_0.3	0.06	120	0.06	120	< 0.001	1.3	< 0.001	1.3
	14/05/2015	BH8_0.3	S15-My14539	HA7_0.3	0.18	650	0.18	650	< 0.001	2.7	< 0.001	2.7
	29/05/2015	BH10_1.0	S15-My26640		0.03	160	0.03	160	-	-	-	-

NSW 2008 General Solid Waste (SCC1 & TCLP1 - Leaching) NSW 2008 Restricted Solid Waste (SCC2 & TCLP2 - Leaching)

Table 5 Soil Analytical Results UCL95% Waste Classification Criteria

	Lead	Benzo(a)pyrene
	mg/kg	mg/kg
EQL	5	0.5
NSW 2008 General Solid Waste (CT1 - No Leaching)	100	0.8
NSW 2008 Restricted Solid Waste (CT2 - No Leaching)	400	3.2

LocCode	Sampled_Date	e SampleCode	Map ID	Туре	Field_ID		
	13/05/2015	S15-My14517	BH1_0.5	brown	MW1_0.5	890	0.9
	13/05/2015	S15-My14519	BH1_2.0	grey	MW1_2.0	250	2.1
	13/05/2015	S15-My14521	BH2B_0.5	brown	MW2_0.5	22	0.25
	13/05/2015	S15-My14522	BH2B_1.0	grey	MW2_1.0	81	1.6
	13/05/2015	S15-My14525	BH3A_0.5	brown	MW3_0.5	9	0.25
	13/05/2015	S15-My14526	BH3A_1.0	grey	MW3_1.0	17	0.25
	13/05/2015	S15-My14528	BH4_0.5	grey	MW4_0.5	180	6.2
	13/05/2015	S15-My14529	BH4_1.0	brown	MW4_1.0	100	2.1
	13/05/2015	S15-My14531	BH6_0.1	brown	HA5_0.1	130	0.25
	14/05/2015	S15-My14538	BH6_0.3	brown	HA5_0.3	120	13
	13/05/2015	S15-My14532	BH7_0.2	brown	HA6_0.2	63	0.25
	13/05/2015	S15-My14533	BH7_0.5	brown	HA6_0.5	120	1.7
	13/05/2015	S15-My14534	BH8_0.1	brown	HA7_0.1	370	1
	14/05/2015	S15-My14539	BH8_0.3	brown	HA7_0.3	650	2.7
	13/05/2015	S15-My14540	BH9_0.2	grey / brown	HA8_0.2	97	1
	29/05/2015	S15-My26640	BH10_1.0	brown	BH10_1.0	160	0.8
	29/05/2015	S15-My26641	BH10_2.0	brown	BH10_2.0	90	0.8

Note:

Samples classified as CT1 based on 95% UCL for both lead and benzo(a)pyrene (95%ucl lead = 92.8mg/kg and 95%ucl benzo(a)pyrene = 0.65mg/kg)

Well ID	Date Measured	Time	Event	Depth to	Total well	Dissolved	Electrical	рН	Redox	Temperature	Total Dissolved	Purge Volume	Comments
		Measured		Water*	Depth*	Oxygen	Conductivity		Potential		Solids (TDS)**		
				(mbtoc)	(mbtoc)	(mg/L)	(uS/cm)		(mV)	(oC)	(mg/L)	(L)	
MW1	15/05/2015	AM	Pre sampling	2.495	4.29	3.25	865	6.27	49	22.2	562	7	Well running dry after 7 L, cloudy brown water, no sheen, no odour.
MW2	15/05/2015	AM	Pre sampling	2.897	4.77	0.3	101	6.35	30	23.5	66	2.5	Well running dry after 2.5 L, cloudy brown water, no sheen, no odour.
MW3	15/05/2015	AM	Pre sampling	2.660	3.5	0.77	883	6.15	31	22.9	574	2	Well running dry after 2 L, cloudy brown water, no sheen, no odour.
MW4	1/06/2015	AM	Pre sampling	2.290	2.970	No	t enough water purg	ed to record	Is field parame	eters		2	Well running dry after 2 L, cloudy brown water, no sheen, no odour.

Notes:

*: mbtoc : m below top of casing. Because wells were installed with a flush gatic, the water level in mbtoc is approximately 0.05 m below ground surface (mbgs).

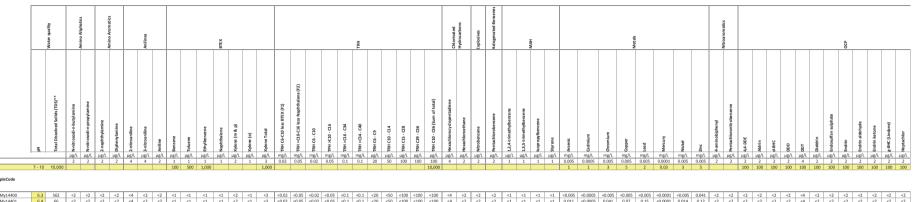
** : TDS calculated from EC using formula EC(uS/cm) x 0.650 = TDS (mg/L)

	Amino Aliphatics		Ami no Ar omatics		Anilines				BTEX								TRH						Chlor ina ted Hydr ocarbons	Explosives	Halogenated Benzenes		100						Metals						Nitroaromatics								£00					
	N-ni trosodi-n-butyl amine	N=111 LOSOMI-11- Propyramme 2-nabhthylamine	2-rayrutryanımıc Diphenylamine	2-nitroani line	3-nitroantiine	Anii ne Benzene	Ethylbenzene	Toluene	Naphthalene	Xylene (m & p)	Xylene (o)	Approve FOLD	and the second	TRH C6 - C10	TPH >C10 - C16	TRH >Ct6 - C34	TRH > C34 - C40	TRH C6 - C9	TRH C10-C14	TRH C15 - C28	TRH C29 - C36	TRH C10- C36 (Sum of total)	He xa chlorocyclopenta die ne	Hexachloroethane Nitrobenzene	Pentachlorobenzene	1, 2, 4-trimethylbenzene	1,3,5-trimethylbenzene	lsopr opylbe nzene	styrene	Arsenic		Chromium	Copper	read	Meraury	Nickel	100		4-aminobiphenyi Dantarhioroni rohanana	4.4DDE		d-BHC	00	DDT	Dieldrin	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-bHC (Undane) Heatachlor	Heptachlor epoxide	
	µg/L µ					g/L μg/		µg/L	µg/L			/L mg		t/L mg/			/L mg	/L μg/	'L μg/L	µg/L	µg/L	µg/L	μg/L μ	g/L µg/	L μg/	μg/L	µg/L	μg/L μ	g/L mj		g/L	mg/L	mg/L	mg/L	mg/L	mg/		g/L μ	g/L μg	/L µg	/L μg	/L μg/l	. μg/L	µg/L	µg/L	µg/L	µg/L	µg/L µ	ıg/L με	z/L μg	/L µg/L	
EQL	2	2 2	2 2	4	4				1	2			2 0.	0.0	2 0.0	5 0.	1 0.:	1 20	50	100	100	100	4	2 2	2	1	1	1		005 0.0		0.005	0.005	0.005	0.0001			005	2 2	2	2	2	2	4	2	2	2	2			2	
NEPM 2013 GILs, Drinking Water(B)							300	800			61	00																3	BO 0.	.01 0.0	02		2	0.01	0.001	0.02	2		3	D				9					1	.0	0.3	
NEPM 2013 GILs, Fresh Waters(A)						8 950	0		16	3	150												1	90						0.0	002		0.0014	0.0034	0.00006	5 0.01	1 0.0	800						0.006			0.01		0	.2 0.0	4	
NEPM 2013 GILs, Marine Waters(A)						500	0		50																					0.0	007		0.0013	0.0044	0.0001	0.00	0.0	015									0.004					
NEPM 2013 Residential GW HSL A/B Vapour Intrusion, 2m to <4m, Sand						800	0					1		L																																						
Field_ID WellCode Sampled_Date-Tir SampleCode																																																				
MW1 14/05/2015 S15-My14400	<2 <	2 <	2 <2	<4	<2 ·	<2 <1	4	<1	<1	<2 ·	<1 <	3 <0.	02 <0	05 <0.0	12 <0.0	05 <0.	1 <0.	1 <2	0 <50	<100	<100	<100	<4	2 2	<2	<1	<1	4 4	1 <0.	.005 <0.0	005 <	0.005	< 0.005	< 0.005	< 0.000	L <0.00	05 0.0	41	2 <	2 <	2 <	2 <2	<2	<4	<2	<2	<2	<2	<2 <	2 <	2 <2	i.
MW2 14/05/2015 515-My14401					<2 -																																															
MW3 14/05/2015 S15-My14402	<2 <	2 <	2 <2	<4	<2 ·	<2 <1	4	<1	<1	<2 ·	<1 <	3 <0.	02 <0	.05 <0.0	12 <0.0	05 1.	5 0.4	4 <2	0 <50	700	900	1600	<4	<2 <2	<2	<1	<1	<1 <	1 <0.	.005 <0.0	005 0	0.006	< 0.005	0.017	< 0.000	L <0.00	05 0.0	064	2 <	2 <	2 <	2 <2	<2	<4	<2	<2	<2	<2	<2 <	2 <	2 <2	
MW4 2/06/2015 S15-Jn01430	· ·				<2 ·	· <1	<1	<1	<1	<2	<1 <	3 0.5	4 <0	.05 0.5	4 <0.0	05 <0.	.1 <0.	1 54	0 <50	<100	<100	<100						-	- 0.0	003 0.0	001 0	0.002	0.004	< 0.001	<0.000	L 0.00	1 0.0	016				-			•	-	-				-	
				-										1			1				<u> </u>															-				_	1	1	-	1						1		

Field ID MW1 MW2 MW3 MW4 Notes

NEPM 2013 GlLs, Drinking Water(B) NEPM 2013 GlLs, Fresh Waters(A) NEPM 2013 GlLs, Marine Waters(A) NEPM 2013 Residential GW HSL A/B Vapour Intrusion, **2**m to <4m, Sand

		_											OPP																					РАН										Pesticides					Phenol							Phthalates
			Hexa chlorobenzene Methoxychlor	Azinophos methyl	comptones Coumaphos	Demeton-O	Demeton-S	Diazinon	Dichloros	Dimethoate	Ethoprop	Facitrothion	remadanon Fensulfothion	Easthion	Fenthion	Malathion	Methyl parathion	Mevinphos (Phosdrin)	Monocr otophos	Parathion	Phorate	Prothiofos	Ronnel	Stirophos	rrunoronate 2-chloronaphthalene	2-methy Inapht hale ne	3-methykholanthrene	Acenaphthene	Acenaphthylene	Acetophenone	Anthracene	b en 20(a) an trina cente Benzol a) brytene	Benzo(g, h,j)perylene	Benzo(k)fluor an the ne	Chr ysene	B enzo[b+j]fluoranthene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	Pyrene	Total PAHs	Profenofos	2-chlorophenol	2-methylphenol	2-nitrophenol	3-&4-methylphenol	4-chloro-3-methy lphenol	4-nitrophenol		Pentachlorophenol	Phenol	Bis(2-ethylhexyl) phthalate	B utyl benzyl phthalate	Diethy Iphtha late
			μg/L μg/L	μg/L μ	/L μg/L	µg/L	µg/L	µg/L µį	g/L μ	ıg/L μg	/L μg/	Lμg	/L μg	/L μg	g/L	µg/L	µg/L	ıg/L	µg/L	ıg/L	µg/L	ιg/L μ	ıg/L μ	g/L με	/L μg/	L μg/L	. μg/L	μg/L	µg/L	µg/L	μg/L μ	t/L μg	L μg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	. μg/L	. μg/l	L μg/	L µg	/L µ	g/L μ	ig/L µ	ıg/L μ	g/L F	ıg/L
			2 1	2	2 2	2	2	2	2	2 2	2	2	2 2	1 2	2	2	2	2	20	2	2	2	2	2	2 2	2	2	1	1	2	1	1 1	1	1	1	0.001	1	1	1	1	1	1				2	2	4	2	2	2 1	10	2	20	2	2
3 GILs, Drinking Wat	ater(B)			30 1	0			4	5	7 4	1	7	7		7	70	0.7	6		20												0.0	1											0.3	300							10		10		
3 GILs, Fresh Waters	rs(A)			0.	D1			0.01	0	.15		0.	.2			0.05			0	.004																									340		4				3	3.6 3	320		1	000
	ters(A)			0.0	09																																															11 4	400			
3 GILs, Marine Wate		n to <4m, Sand																																													4									
013 GILs, Marine Wate 013 Residential GW HS	13c Ay 6 vapour incrusion, and																																																							
3 Residential GW HS	Sampled_Date-Tir Sampled_	leCode																																										_												
3 Residential GW HS	Sampled_Date-Tir Sampled_	leCode	<2 <1	<2 <	2 <2	<2	<2	<2 <	<2 .	<2 <	2 4		2 <	2 <	<2	<2	<2	<2	<20	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<1	<1	<2	<1	1 <	<1	<1	<1	<0.001	<1	<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<4	<2	<	2 <	10	<2	<20	<2	<2
3 Residential GW HS	Sampled_Date-Tir Sampled_14/05/2015 S15-W	leCode 1y14400	<2 <1 <2 <1							<2 <									<20 <20								<2																													
3 Residential GW HS	Sampled Date-Tir Sample 14/05/2015 S15-W 14/05/2015 S15-W	leCode Λγ14400 Λγ14401		<2 <	2 <2	<2	<2	<2 <	<2 ·	<2 <	2 <2		2 <3	2 <	2	<2	<2	<2	<20	<2	<2	<2	<2	<2 <	2 <2	<2	<2	<1	<1	<2	<1	1 <	<1	<1	<1	< 0.001	<1	<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<4	<2	<	2 <	10	<2	<20	<2	<2

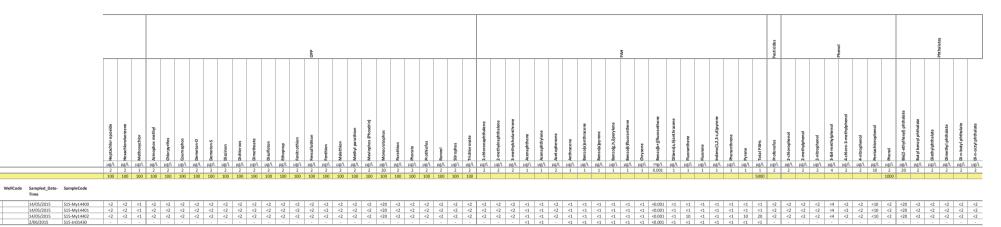

					Solvents					svocs																						VHC																		
			Di-n-octyl phthaiate	Methyl Ethyl Ketone	4-Methyl-2-pentanone	Carbon disulfide	4-brom ophenyl phenyl ether	4-chlorophenyl phenyl ether	Bis(2-chlor oethoxy) methane	Bis(2-chlor oethyl) ether	Carbazol e	Dibenzofuran	N-ni tros opipe ridi ne	1,1,1,2.t et rachi or oethane	1, 1, 1-t richlor oet hane	1,1,2,2.4 et rachl oroe thane	1, 1, 2-trichlor oethane	1, 1-dichloroethane	1, 1-dichloroethene	1, 2, 3-trichlor opropane	1, 2-dibromoethane	1, 2-dichl orobenzene	1, 2-dichloroethane 1. 2-dichlorowoodaa	J. 3-dichlorobenzene	1,3-dichloropropane	1,4-dichlorobenzene	4-chlorotoluene	Bromobenzene	B romochlor omethane	B romodi chloromethane	Bromoform	Bromomethane	Carbon tetrachloride	Chlorobenzene	Chlorodibr omomethane	Chloroethane	Chloroform	Chloromethane	cis-1,2-dichlor oethene	cis-1,3-dichlor opropene	Dibromomethane	Dichl orodifluor ome thane	Dichloromethane	Hexa chlorobuta diene	lodomethane	i nanoroetnene Tataabaaaabaaaa	rans-1.2-dichloroethene	ri ans-1,4-чилити чеситете trans-1,3-dichlor opropene	richlorofluorome thane	Vinyl chloride
				μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L		µg/L	ig/L i	ıg/L µ	g/L µg	/L μg/I	L μg/L	L µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	IR/L I	ig/L I	µg/L	µg/L I	ug/L µ	ig/L i	g/L g	ug/L μ	g/L µ	g/L µ	z/L μρ	/L μg	z/L μg/l	·L μg/I	μg/I
EQL			2	1	1	1	2	2	2	2	2	2	2	1	1	5	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	5	1	1	1	5	1	1	2	1	1 1	. 1	1 1	1	1
NEPM 2013 GILs,	Drinking Water(B)																		30		1	500	3			40						1	3	300			3						4 1	0.7		5	D			0.3
NEPM 2013 GILs,																	6500					160		260		60																								
	Marine Waters(A)																1900																																	
		our Intrusion, 2m to <4m, San	d																																															
Field_ID	WellCode Sample	d_Date-Tir SampleCode																																																
MW1	14/05/	2015 S15-My14400	<2	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1 <	l <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1	<1	<1	<5	<1	<1	<2 <	<1 <	1 2	<	1 <1	<1	<1
MW2	14/05/			<1	<1		<2		<2	<2	<2	<2	<2	<1		<	<1	<1					<1 <	_		_	<1	<1	<1																		1 <	1 <1	l <1	<1
MW3	14/05/	2015 S15-My14402	<2	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1 <	l <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1	<1	<1	<5	<1	<1	<2 <	<1 <	1 1	<	1 <1	<1	<1
MW4	2/06/2	015 \$15-Jn01430							-			-		<1	<1	<5	<1	<1	<1	<1	<1	<1	<1 <	l <1	<1	<1	-	-	•	<1	<1	<1	<1	<1	<1	-	<5	<1	63	<1	<5	•	<1	- 4	<1 8	19 29	0 <	1 <1	<1	<1
MW4	7.13																																																	

Field Duplicates (WATER) Filter: SDG in('851','801','3/06/201	5','353','7662','26/05/2015','0351-52')		SDG Field ID Sampled Date/Time	7662 MW2 14/05/2015	7662 DUP01 14/05/2015	RPD	851 BH10/MW4 2/06/2015	Interlab_D QC8 2/06/2015	RPD
Chem_Group Amino Aliphatics	ChemName N-nitrosodi-n-butylamine	Units µg/l	EQL 2	<2.0	<2.0	0			
	N-nitrosodi-n-propylamine	µg/l	2	<2.0	<2.0	0			
Amino Aromatics	2-naphthylamine Diphenylamine	µg/l µg/l	2 2	<2.0 <2.0	<2.0 <2.0	0			
Anilines	2-nitroaniline	µg/l	4	<4.0	<4.0	0			
	3-nitroaniline Aniline	μg/l μg/l	4 2	<2.0 <2.0	<2.0 <2.0	0			
BTEX	Benzene	µg/l	1	<1.0	<1.0	0	<1.0	1.0	0
	Ethylbenzene Toluene	μg/l μg/l	1 (Primary): 2 (Interlab) 1 (Primary): 2 (Interlab)	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<2.0	0
	Naphthalene	µg/l	20 (Primary): 5 (Interlab)	<1.0 <20.0 <1.0	<20.0	0	<1.0 <20.0 <1.0	<1.0	0
	Xylene (m & p)	µg/l µg/l	1 (Primary): 5 (Interlab) 2	<2.0	<2.0	0	<2.0	<2.0	0
	Xylene (o) Xylene Total	µg/l µg/l	1 (Primary): 2 (Interlab) 3 (Primary): 2 (Interlab)	<1.0 <3.0	<1.0 <3.0	0	<1.0 <3.0	<2.0 <2.0	0
TRH	TRH C6-C10 less BTEX (F1)	mg/l	0.02	<0.02	<0.02	0	0.54	0.37	37
	TRH >C10-C16 less Naphthalene (F2) TRH C6 - C10	mg/l mg/l	0.05 (Primary): 0.1 (Interlab) 0.02	<0.05 <0.02	<0.05 <0.02	0	<0.05 0.54	<0.1 0.37	0 37
	TPH >C10 - C16 TRH >C16 - C34	mg/l mg/l	0.05 (Primary): 0.1 (Interlab) 0.1	<0.05 <0.1	<0.05 <0.1	0	<0.05 <0.1	<0.1 <0.1	0
	TRH >C34 - C40 TRH C6 - C9	mg/l µg/l	0.1 20	<0.1 <20.0	<0.1 <20.0	0	<0.1 540.0	<0.1 370.0	0 37
	TRH C10 - C14 TRH C15 - C28	μg/l μg/l	50 100	<50.0 <100.0	<50.0 <100.0	0	<50.0 <100.0	<50.0 <100.0	0
	TRH C29 - C36 TRH C10 - C36 (Sum of total)	μg/l μg/l	100 (Primary): 50 (Interlab) 100 (Primary): 50 (Interlab)	<100.0 <100.0 <100.0	<100.0 <100.0 <100.0	0	<100.0 <100.0 <100.0	<50.0 <50.0	0
Chlorinated Hydrocost			4	<100.0		0	~100.0	~30.0	0
Chlorinated Hydrocarbons	Hexachlorocyclopentadiene Hexachloroethane	µg/l µg/l	4	<4.0 <2.0	<4.0 <2.0	0			
Explosives	Nitrobenzene	µg/l	2	<2.0	<2.0	0			
Halogenated Benzenes	Pentachlorobenzene	µg/l	2	<2.0	<2.0	0			
MAH	1,2,4-trimethylbenzene	µg/l	1	<1.0	<1.0	0			
	1,3,5-trimethylbenzene Isopropylbenzene	μg/l μg/l	1	<1.0 <1.0	<1.0 <1.0	0			
	Styrene	µg/l	1	<1.0	<1.0	0			
Metals	Arsenic	mg/l mg/l	0.005	0.011	0.009	20 0			
	Cadmium Chromium	mg/l	0.005	0.041	0.032	25			
	Copper Lead	mg/l mg/l	0.005	0.07 0.15	0.054 0.12	26 22			
	Mercury Nickel	mg/l mg/l	0.0001 0.005	<0.0001 0.014	<0.0001 0.012	0 15			
	Zinc	mg/l	0.005	0.12	0.094	24			
Nitroaromatics	4-aminobiphenyl Pentachloronitrobenzene	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
OCP	4,4-DDE	µg/l	2	<2.0	<2.0	0			
	Aldrin d-BHC	μg/l μg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	DDD DDT	μg/l μg/l	2 4	<2.0	<2.0	0			
	Dieldrin	µg/l	2	<2.0	<2.0	0			
	Endosulfan sulphate Endrin	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Endrin aldehyde Endrin ketone	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	g-BHC (Lindane) Heptachlor	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Heptachlor epoxide Hexachlorobenzene	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Methoxychlor	µg/l	1	<1.0	<1.0	0			
OPP	Azinophos methyl Chlorpyrifos	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Coumaphos Demeton-O	µg/l	2	<2.0	<2.0	0			
	Demeton-S	µg/l µg/l	2 2	<2.0 <2.0 <2.0	<2.0	0			
	Diazinon Dichlorvos	µg/l µg/l	2	<2.0	<2.0	0			
	Dimethoate Disulfoton	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Ethoprop Fenitrothion	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Fensulfothion Fenthion	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Malathion Methyl parathion	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	Mevinphos (Phosdrin) Monocrotophos	µg/l µg/l	2 20	<2.0 <20.0	<2.0 <20.0	0			
	Parathion Phorate	µg/l µg/l	2	<2.0	<2.0	0			
	Prothiofos Ronnel	μg/l μg/l	2 2	<2.0 <2.0 <2.0	<2.0	0	 		
	Stirophos	µg/l	2 2	<2.0 <2.0 <2.0	<2.0 <2.0 <2.0	0	İ — —		
DALL	Trichloronate	µg/l							
PAH	2-chloronaphthalene 2-methylnaphthalene	µg/l µg/l	2	<2.0 <2.0	<2.0 <2.0	0			
	3-methylcholanthrene Acenaphthene	µg/l µg/l	2 1	<2.0 <1.0	<2.0 <1.0	0	<1.0	<1.0	0
	Acenaphthylene Acetophenone	µg/l µg/l	1 2	<1.0 <2.0	<1.0 <2.0	0	<1.0	<1.0	0
	Anthracene Benzo(a)anthracene	µg/l µg/l	1 1	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1.0 <1.0	0
	Benzo(a)pyrene Benzo(g,h,i)perylene	µg/l µg/l	1 (Primary): 0.5 (Interlab)	<1.0	<1.0	0	<1.0 <1.0 <1.0	<0.5	0
	Benzo(k)fluoranthene Chrysene	μg/l μg/l	1	<1.0 <1.0 <1.0	<1.0	0	<1.0 <1.0 <1.0	<1.0	0
	Benzo[b+j]fluoranthene Dibenz(a,h)anthracene	mg/l	0.001	<0.001 <1.0	<0.001 <1.0	0	<0.001 <1.0	<0.001 <1.0	0
	Fluoranthene	µg/l µg/l	1	<1.0	<1.0	0	<1.0	<1.0	0
	Fluorene	µg/l	1	<1.0	<1.0	0	<1.0	<1.0	0

Field Duplicates (WATER) Filter: SDG in('851','801','3/0	06/2015','353','7662','26/05/2015','0351-52')		SDG Field ID Sampled Date/Time	7662 MW2 14/05/2015	7662 DUP01 14/05/2015	RPD	851 BH10/MW4 2/06/2015	Interlab_D QC8 2/06/2015	RPD
Chem_Group	ChemName	Units	EQL						
onem_oroup	Indeno(1,2,3-c,d)pyrene	µg/l	1	<1.0	<1.0	0	<1.0	<1.0	0
	Phenanthrene	µg/l	1	<1.0	<1.0	0	<1.0	<1.0	0
	Pyrene Total PAHs	µg/l µg/l	1	<1.0 <1.0	<1.0 <1.0	0	<1.0	<1.0	0
Pesticides	Profenofos	110/	0	<2.0	<2.0	0			L
resticides	FIDIENDIOS	µg/l	2	~2.0	~2.0	0			
Phenol	2-chlorophenol 2-methylphenol	µg/l	2	<2.0 <2.0	<2.0 <2.0	0			L
	2-nitrophenol	µg/l µg/l	2	<2.0	<2.0	0			<u> </u>
	3-&4-methylphenol	µg/l	4	<4.0	<4.0 <2.0	0			
	4-chloro-3-methylphenol 4-nitrophenol	µg/l	2	<2.0	<2.0	0			
	Pentachlorophenol	µg/l	10	<10.0	<10.0	0			
	Phenol	µg/l	2	<2.0	<2.0	0			-
Phthalates	Bis(2-ethylhexyl) phthalate	µg/l	20	<20.0	<20.0	0			
	Butyl benzyl phthalate Diethylphthalate	µg/l µg/l	2	<2.0	<2.0 <2.0	0			
	Dimethyl phthalate	µg/l	2	<2.0	<2.0	0			
	Di-n-butyl phthalate Di-n-octyl phthalate	µg/l µg/l	2	<2.0	<2.0 <2.0	0			
Solvents	Methyl Ethyl Ketone 4-Methyl-2-pentanone	µg/l	1	<1.0 <1.0	<1.0 <1.0	0			
	Carbon disulfide	µg/l	1	<1.0	<1.0	0			
SVOCs	4-bromophenyl phenyl ether	µg/l	2	<2.0	<2.0	0	┟───┤		<u> </u>
	4-chlorophenyl phenyl ether	µg/l	2	<2.0	<2.0	0			
	Bis(2-chloroethoxy) methane Bis(2-chloroethyl)ether	µg/l	2	<2.0 <2.0	<2.0 <2.0	0			<u> </u>
	Carbazole	µg/l µg/l	2	<2.0	<2.0	0			
	Dibenzofuran N-nitrosopiperidine	µg/l	2	<2.0 <2.0	<2.0	0			
	N-hitrosopipenaine	µg/l	2	<2.0	<2.0	0			-
VHC	1,1,1,2-tetrachloroethane	µg/l	1 (Primary): 5 (Interlab)			_	<1.0	<5.0	0
	1,1,1,2-tetrachloroethane 1,1,1-trichloroethane	µg/l µg/l	1 1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,1,1-trichloroethane	µg/l	1	<1.0	<1.0	0			
	1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	µg/l µg/l	5	<5.0 <1.0	<5.0 <1.0	0	<5.0	<5.0	0
	1,1,2-trichloroethane	µg/l	1 (Primary): 5 (Interlab)	41.0	41.0	0	<1.0	<5.0	0
	1,1-dichloroethane	µg/l	1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,1-dichloroethene	µg/l µg/l	1 (Primary): 5 (Interlab)	\$1.0	\$1.0	0	<1.0	<5.0	0
	1,1-dichloroethene	µg/l	1 1 (Drimon): 5 (Interlah)	<1.0	<1.0	0	-10	-5.0	
	1,2,3-trichloropropane 1,2,3-trichloropropane	µg/l µg/l	1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,2-dibromoethane	µg/l	1 (Primary): 5 (Interlab)			<u>^</u>	<1.0	<5.0	0
	1,2-dibromoethane 1,2-dichlorobenzene	µg/l µg/l	1 1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,2-dichlorobenzene	µg/l	1	<1.0	<1.0	0			
	1,2-dichloroethane	µg/l	1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,2-dichloropropane	µg/l	1 (Primary): 5 (Interlab)				<1.0	<5.0	0
	1,2-dichloropropane 1,3-dichlorobenzene	µg/l µg/l	1 1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,3-dichlorobenzene	µg/l	1	<1.0	<1.0	0	51.0		
	1,3-dichloropropane 1,3-dichloropropane	µg/l µg/l	1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,4-dichlorobenzene	µg/l	1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	1,4-dichlorobenzene	µg/l	1	<1.0	<1.0	0			
	4-chlorotoluene Bromobenzene	µg/l µg/l	1	<1.0 <1.0	<1.0 <1.0	0			
	Bromochloromethane	µg/l	1	<1.0	<1.0	0			
	Bromodichloromethane Bromodichloromethane	µg/l	1 1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	Bromoform	µg/l	1 (Primary): 5 (Interlab)				<1.0	<5.0	0
	Bromoform Bromomethane	µg/l µg/l	1 1 (Primary): 50 (Interlab)	<1.0	<1.0	0	<1.0	<50.0	0
	Bromomethane	µg/l	1	<1.0	<1.0	0			
	Carbon tetrachloride Carbon tetrachloride	μg/l μg/l	1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	Chlorobenzene	µg/l	1 (Primary): 5 (Interlab)				<1.0	<5.0	0
	Chlorobenzene	µg/l	1 1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	Chlorodibromomethane Chlorodibromomethane	µg/l µg/l	1	<1.0	<1.0	0	×1.0	~0.U	
	Chloroethane	µg/l	1	<1.0	<1.0	0	-5.0	25.0	
	Chloroform Chloromethane	µg/l µg/l	5 1	<5.0 <1.0	<5.0 <1.0	0	<5.0	<5.0	0
	Chloromethane	µg/l	1 (Primary): 50 (Interlab)				<1.0	<50.0	0
	cis-1,2-dichloroethene cis-1,2-dichloroethene	µg/l µg/l	1 (Primary): 5 (Interlab) 1	<1.0	<1.0	0	63.0	54.0	15
	cis-1,3-dichloropropene	µg/l	1 (Primary): 5 (Interlab)				<1.0	<5.0	0
	cis-1,3-dichloropropene Dibromomethane	µg/l µg/l	5	<1.0 <5.0	<1.0 <5.0	0	<5.0	<5.0	0
	Dichlorodifluoromethane	µg/l	1	<1.0	<1.0	0	5.0	5.0	Ľ
	Dichloromethane Hexachlorobutadiene	μg/l μg/l	1	<1.0 <2.0	<1.0 <2.0	0			
	lodomethane	µg/l	1 (Primary): 5 (Interlab)				<1.0	<5.0	0
	lodomethane Trichloroethene	μg/l μg/l	1	<1.0 <1.0	<1.0 <1.0	0	┟───┤		<u> </u>
	Trichloroethene	µg/i µg/i	1 1 (Primary): 5 (Interlab)	×1.0	×1.0	0	89.0	69.0	25
	Tetrachloroethene	µg/l	1 (Primary): 5 (Interlab)			^	290.0	234.0	21
	Tetrachloroethene trans-1,2-dichloroethene	µg/l µg/l	1 1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	trans-1,2-dichloroethene	µg/l	1	<1.0	<1.0	0			1
	trans-1,3-dichloropropene trans-1,3-dichloropropene	µg/l µg/l	1 (Primary): 5 (Interlab)	<1.0	<1.0	0	<1.0	<5.0	0
	Trichlorofluoromethane	µg/l	1 (Primary): 50 (Interlab)				<1.0	<50.0	0
	Trichlorofluoromethane	µg/l	1	<1.0	<1.0	0	1		1
	Vinyl chloride	µg/l	1	<1.0	<1.0	0			

 Image: Winy chloride
 Image: Wi

Field_ID WellCode Sampled Date: Time SampleCode Time MM1 14/05/2015 \$155.44y14401 MM2 14/05/2015 \$155.44y14401 MM3 14/05/2015 \$155.44y14401 MM4 2/06/0215 \$155.44y14401 MM4 12/06/2015 \$155.44y1401 MM4 2/06/0215 \$155.44y1401 MM44 2/06/0215 \$155.44y1401 MM45 \$100.44y1401 \$100.44y1401 MM45 \$100.44y1401 \$100.44y1401 MM45 <


EQL TWA

1		S15-My14400																																																
2	14/05/2015	S15-My14401	6.4	66	<2 <2	<2	<2	<4 <	2 <2	<1	<1	<1	<1	<2 <1	<3	<0.0	2 <0.05	5 <0.02	< 0.05	<0.1	<0.1 <2	0 <50	<100	<100 <	<100	<4 <2	<2	<2	<1	<1 <	1 <1	0.011	< 0.0005	0.041	0.07	0.15	< 0.0001	0.014	0.12	<2	<2	<2 /	<2 <2	<2	<4	<2	<2 <2	<2	<2	<2 <2
3	14/05/2015	S15-My14402	6.2	574	<2 <2	<2	<2	<4 <	2 <2	<1	<1	<1	<1	<2 <1	<3	<0.0	2 <0.05	5 <0.02	< 0.05	1.5	0.4 <2	0 <50	700	900 1	1600	<4 <2	<2	<2	<1	<1 <	1 <1	< 0.005	< 0.0005	0.006	<0.005	0.017	< 0.0001	< 0.005	0.064	<2	<2	<2 /	<2 <2	<2	<4	<2	<2 <2	<2	<2	<2 <2
4	2/06/2015	\$15-Jn01430								<1	<1	<1	<1	<2 <1	<3	0.54	< 0.05	5 0.54	< 0.05	<0.1	0.1 54	0 <50	<100	<100 <	<100							0.003	0.0001	0.002	0.004	< 0.001	< 0.0001	0.001	0.016	-		-		-	-	-		-		

Sydney Water, Acceptance standards amd chrging rates for 2012-13

Surry Hills_Tables.xlsx , 18/06/2015

Notes Sydney Water, Acceptance standards am

Field_ID MW1 MW2 MW3 MW4

Surry Hills_Tables.xlsx , 18/06/2015

		Solv ents					SVOCs																						VHC																			
	Methyl Ethyl Ketone	전 4-Methyl-2-pentanone	Carbon disulfide	전 4-bromophenyl phenyl ether	전 4-chlorophenyl phenyl ether	Bis(2 chloroethoxy) methane		Carrbazole T/ ^{8th}	전 Dibenzofuran	R N-nitr osopiper idine	전 1,1,1,2-te trachloroethane	전 1,1,1,1 trichloroethane	1,1,2,2-tetrachioroethane				2, 1,2,3 < richloropropane	1/2 1/2 elliptic molecularie			¥ 2		Providence operative and the second s	경 전 4-chi orotoluene	Bromobenzene	一 山 の の の の の の の の の の の の の の の の の の の	Bromodichlorom ethane	Bromoform	下 Bromom ethane		内 Chlor obenzene	전 Chlor odi bromome than e			口 Chlor omet hane	전 cis-1,2-dichloroethene	kis-1,3-dichloropropene	Dibromomethane			Hexachlorobutadiene	lodomethane 7/8/1						기 Vinyi chloride
	1	1	1	2	2	2			2	2		1	5	1			1		1 1				1 1	1	1	1	1	1	1	1	1	1	1	5	1	1	1	5	1	1	2	1		1	1	1	1	1
																																		100									100	300				
pleCode																																																
My14400	<1	<1	<1	<2	<2	2	<2	<2	<2	<2	<1	<1	<5 (5	<1	<1	<1	1 4	1 <	1 <	1 <	1 <	1 <	1 <	<1	1 <1	<1	<1	<1	<1	<1	4	<1	<1	<5	<1	<1	<1	<5	<1	<1	<2	<1	<1	2	<1	<1		<1
Mv14401	<1	- 1	21	0	0	0	0	0	0	0	1	<1 L	-5	21	-1	1	4 .	d 2	1 /	1 /	1 /	1 /	1 0	10	1 <1	1	1	- 21	<1	- 1	1	-1	<1	-15	<1	<1	1	15	<1	<1	0	1	- 1	1	-1	<1 I	<1	1

WellCode Sampled_Date- Sample Time Field_ID

	Time																																															
MW1	14/05/2015	\$15-My14400	<1	<1	<1	<2	<2	<2	<2	<2 <	<2	<1	<1	<5	<1	<1	<1	<1 <	1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1 <	1 <	5 <1	<1	1 <	1 <	5 <	1 <	1 .	<2 <	1 <1	2	<1	<1	<1	<1
MW2	14/05/2015	S15-My14401	<1	<1	<1	<2	<2	<2	<2	<2 <	<2	<1	<1	<5	<1	<1	<1 .	<1 <	1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1 <	1 <	5 <1	<1	1 <	1 <	s <	1 <	1 .	<2 <	1 <1	<1	<1	<1	<1	<1
MW3	14/05/2015	S15-My14402	<1	<1	<1	<2	<2	<2	<2	<2 <	<2	<1	<1	<5	<1	<1	<1 .	<1 <	1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1 <	1 <	5 <1	<1	1 <	1 <	s <	1 <	1 .	<2 <	1 <1	1	<1	<1	<1	<1
MW4	2/06/2015	\$15-Jn01430		-	-	-	-	-	-		-	<1	<1	<5	<1	<1	<1	<1 <	1 <	1 <1	<1	<1	<1	<1	-		-	<1	<1	<1	<1	<1	1	. <	5 <1	63	3 <	1 <	s ·	<	1	- <	1 89	290	<1	<1	<1	<1
Notes	Sydney Water	Accentance standards	am																																													

Sydney Water, Acceptance standards am

EQL TWA

Table 10 Soil Vapour Analytical Results Beneficial Uses Criteria

			ВТ	EX					TR	RH					VHC		
	венизение mg/m3	Ethylbenzene mg/m3	Joinene Mg/m3	mg/m3	wg/mg	Xylene (o) mg/m3	a RM C6-C10 less BTEX (F1)	Bundan Support States (F2) Support States (F2)	ткн с6 - с10 mg/m3	mg/m3	ткн се - сэ mg/m3	mg/w3	au (1,1,1,1-trichloroethane در 1,1,1-trichloroethane	Background and the set of the set	Trichloroethene mg/m3	Tetrachloroethene mg/m3	Vinyl chloride wg/w3
EQL	0.1	0.22	0.19	0.1	0.43	0.22	20	40	20	40	20	35	0.27	0.02	0.0054	0.34	0.0051
HSL-A/B, 0 to <1m, sand	1	330	1300	0.8	840		180	130									
HIL-B													60	0.05	0.02	2	0.03

Field ID LocCode WellCode Sampled Date-Time

			-																
SV01	#9680	15/05/2015	< 0.1	<0.22	<0.19	<0.1	<0.43	<0.22	<20	<40	<20	<40	<20	<35	<0.27	<0.02	0.0102	8.34	<0.0051
SV02	#9678	15/05/2015	< 0.1	<0.22	<0.19	<0.1	<0.43	<0.22	<20	<40	<20	<40	<20	<35	<0.27	< 0.02	<0.0054	< 0.34	<0.0051

Notes: HSL-B, 0 to <1m, sand (NEPM 2013 Commercial/Ind D Soil Vapour HSL for Vapour Intrusion, 0 to <1m, Sand) HIL-B (NEPM HIL-B Residential 2013 Soil Vapour)

Table 11Surry hills Shopping Centre, Surry Hills NSWQA/QC Rinsates and Trip Blanks Water Analytical Results

Field Blar	nks (WATER))	SDG	851	801	851	6/03/2015
	G in('851','80		Field ID	QC9	QC6	QC10	QC7
	0 11(001,00		Sampled	2/06/2015	29/05/2015	2/06/2015	29/05/2015
			Sample Ty		Rinsate	Trip_B	Trip_B
			oumpic 1	Tanoate	Tanbate		THP_D
Chem G	rdChemNam	Units	EQL				
_							
BTEX	Benzene	µg/l	1	<1	<1	<1	<1
	Ethylbenze		1	<1	<1	<1	<1
	Toluene	µg/L	1	<1	<1	<1	<1
	Naphthaler		1	<20	<20		<20
	Xylene (m		2	<2	<2	<2	<2
	Xylene (o)		1	<1	<1	<1	<1
	Xylene Tot		2	<3	<3	<3	<3
	Total BTE>		0.001				
		Ŭ					
Metals	Arsenic	mg/l	0.001		<0.005		
	Arsenic (Fi		0.001	<0.001			
		mg/l	0.0001		<0.0005		
	Cadmium (0.0001	<0.0001			
	Chromium	mg/l	0.001		<0.005		
	Chromium		0.001	<0.001			
	Copper	mg/l	0.001		<0.005		
	Copper (Fi		0.001	<0.001			
	Lead	mg/l	0.001		<0.005		
	Lead (Filte		0.001	<0.001			
	Mercury	mg/l	0.0001		<0.0001		
	Mercury (F		0.0001	<0.0001			
	Nickel	mg/l	0.001		<0.005		
	Nickel (Filt	mg/l	0.001	<0.001			
	Zinc	mg/l	0.005		<0.005		
	Zinc (Filter	mg/l	0.005	<0.005			
PAH	2-chlorona	µg/l	2				
	2-methylna	µg/l	2				
	3-methylch	µg/l	2				
	Acenaphth		1	<1	<1		
	Acenaphth	µg/l	1	<1	<1		
	Acetophen	µg/l	2				
	Anthracene		1	<1	<1		
	Benzo(a)ar	µg/L	1	<1	<1		
	Benzo(a)p		0.5	<1	<1		
	Benzo(g,h,	µg/l	1	<1	<1		
	Benzo(k)flu	µg/l	1	<1	<1		
	Chrysene	µg/l	1	<1	<1		
	Benzo[b+j]		0.001	<0.001	<0.001		
	Dibenz(a,h	µg/l	1	<1	<1		
	Fluoranthe		1	<1	<1		
	Fluorene	µg/l	1	<1	<1		
	Indeno(1,2	µg/l	1	<1	<1		
	Phenanthre	µg/l	1	<1	<1		
	Pyrene	µg/l	1	<1	<1		
	Total PAHs	µg/l	1	<1	<1		

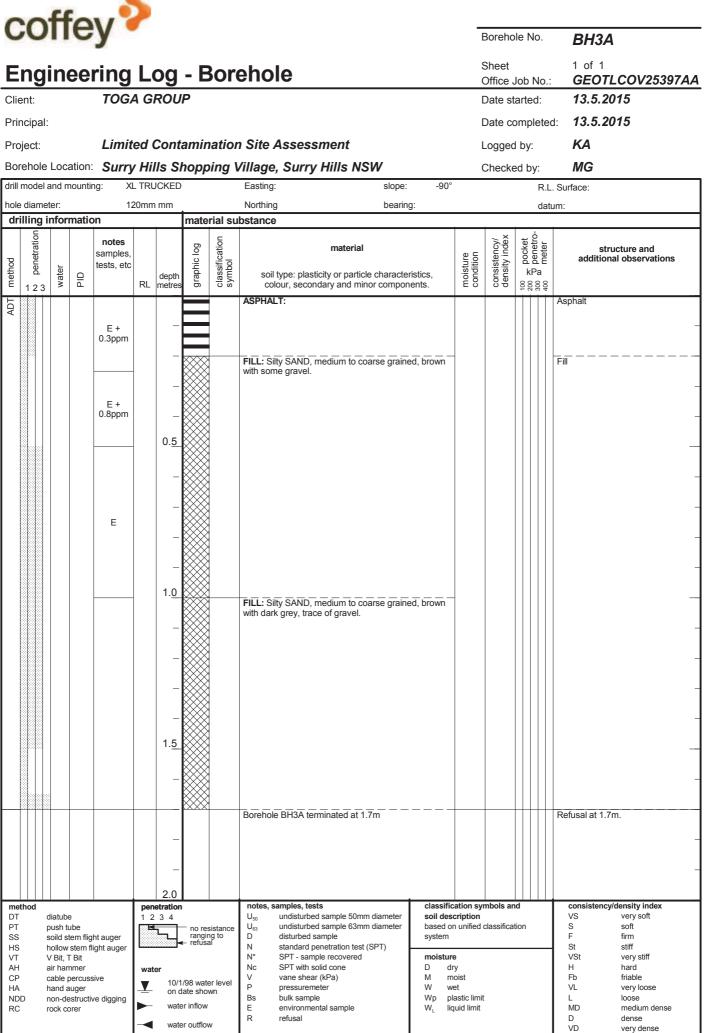
Table 11Surry hills Shopping Centre, Surry Hills NSWQA/QC Rinsates and Trip Blanks Water Analytical Results

	ks (WATER) 6 in('851','80		SDG Field ID Sampled_ Sample Ty	851 QC9 2/06/2015 Rinsate	801 QC6 29/05/2015 Rinsate	851 QC10 2/06/2015 Trip_B	6/03/2015 QC7 29/05/2015 Trip_B
Chem_Gro	ChemNam	Units	EQL				
TRH	TRH C6-C		0.02	<0.02	<0.02		<0.02
	TRH >C10 TRH C6 - (mg/l	0.05	<0.05 <0.02	<0.05 <0.02		<0.02
	TPH >C10 TRH >C16	mg/l	0.05 0.1	<0.05 <0.1	<0.05 <0.1		
	TRH >C34 TRH C6 - (0.1 20	<0.1 <20	<0.1 <20	<20	<20
	TRH C10 -		50	<50	<50		
	TRH C15 - TRH C29 -	µg/l	100 50	<100 <100	<100 <100		
	TRH C10 -	µg/l	50	<100	<100		

Appendix A – Borelogs

coffey			Borehole	- No	BUODA
			Sheet	5 110.	BH02A 1 of 1
Engineering Log	- Borehole		Office Jo	ob No.:	GEOTLCOV25397AA
Client: TOGA GROU	IP		Date sta	rted:	13.5.2015
Principal:			Date cor	mpleted:	13.5.2015
Project: Limited Cont	tamination Site Assessm	ent	Logged	by:	KA
Borehole Location: Surry Hills S	hopping Village, Surry H	lills NSW	Checked	d by:	MG
drill model and mounting: XL TRUCKED	Ū	slope: -90°			urface:
hole diameter: 120mm mm drilling information	Northing material substance	bearing:		datum:	-
			cy/ dex	et erro- er	
Pour la	s colour, secondar s colour, secondar	material y or particle characteristics, ry and minor components.	nai nai	100 pocket 200 penetro- 400 meter	structure and additional observations
	ASPHALT:		D	A	sphalt
	gravel.	grained, brown, with trace of	M	Fi	-
HA hand auger NDD non-destructive digging RC rock corer wat	n notes, samples, tests U ₃₀ undisturbed sa ranging to D disturbed samp	ample 50mm diameter ample 63mm diameter ple tration test (SPT) recovered cone Pa) - - - - - - - - - - - - - - - - - - -	unified classificatio		efusal at 1.2m.

Image: Second	CC	off	fe	V	7							_						
Engineering Log - Borenole Office Job No: GEOTIL COV253972 Client: TOCA GROUP Date starting: 13.5.2015 Principal: Date completed: 13.5.2015 Principal: Date starting: 13.5.2015 Principal: Date completed: 13.5.2015 Principal: Date completed: 13.5.2015 Principal: Surry Hills Shopping Village, Surry Hills NSW Checked by: MG Offine data mounting: XL TRUCKED Easting: elon: -00" R.L. Surface: Veid started: additional documents: XL TRUCKED Easting: elon: -00" R.L. Surface: Veid started: additional documents: XL TRUCKED Easting: elon: -00" R.L. Surface: Veid started: additional documents: Veid started starte	00			7								E	3oreho	le No.		BH04		
Client: TOGA GROUP Date started: 13.5.2015 Principal: Date completed: 13.5.2015 Borehole Location: Surry Hills Shopping Village, Surry Hills NSW Checked by: KA Borehole Location: Structure and additional documents XI. TRUCKED Easing stope: 90.0° RL. Surface: Note location: 120mm mm Northing baaring: datum: datum: drilling information material substance material substance group: grou: <	Eng	gin	ee	ring	L	og	- E	Sor	ehole					lob No	۰ ·		COV2539	9744
Principal: Limited Contamination Site Assessment Logged by: KA Borehole Locatio: Surry Hills Shopping Village, Surry Hills NSW Checked by: MG Checked by: MG		-	-															11 - 4 .
Borehole Location: Surry Hills Shopping Village, Surry Hills NSW Checked by: MG drill model and mounting: XL TRUCKED Easing: slope: -90" RL. Surface: hee denneter: 120mmm Nothig bearing: datum: datum: drilling information: material substance easing: slope: -90" RL. Surface: villing information: notes sentral substance easing: solp of the substance easing: datum: villing information: notes sentral substance easing: soll type: plasticity or particle characteristics, streng of the substance easing: datum: villing information: R.E. datum: datum: datum: datum: datum: villing information: R.E. material easing: soil type: plasticity or particle characteristics, streng of the substance easing:	Princip	oal:										[Date co	omplet	ted:	13.5.20 1	15	
drill model and mounting: XL TRUCKED Easting: slope: 90' R.L. Burface: hole diameter: 120mm mm Nothing bearing: datum: drilling information material aubstance 12.3 b g Q b g g g g g g g g g g g g g g g g	Project	t:		Limit	ted	Cont	amir	natioi	n Site Assessr	nent		l	Loggec	l by:		KA		
hole diameter: 120mm mm Northing bearing: datum: definition material substance adam yage yage <t< td=""><td>Boreho</td><td>ole Loc</td><td>ation</td><td>Surry</td><td>y Hi</td><td>lls S</td><td>hopŗ</td><td>oing \</td><td>Village, Surry I</td><td>Hills NSW</td><td></td><td>(</td><td>Checke</td><td>ed by:</td><td></td><td>MG</td><td></td><td></td></t<>	Boreho	ole Loc	ation	Surry	y Hi	lls S	hopŗ	oing \	Village, Surry I	Hills NSW		(Checke	ed by:		MG		
drilling information material substance generation material substance generation material substance 12.3 g			nounti	0						slope:	-90°			F	R.L. S	urface:		
Notes			matio		20mm	n mm	Imate	rial su	•	bearing	g:			d	atum	12		
2 12.3 9 12 PL meters 0.5 colour, secondary and minor components. 2.5 9.8 9.8.9 Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt J Image: Secondary and minor components. D J J Asphalt J Image: Secondary and minor components. D J J J J J Image: Secondary and minor components. D J <th></th> <th>_</th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>matarial</th> <th></th> <th></th> <th>cy/ dex</th> <th>(et etro-</th> <th>-</th> <th>otruo</th> <th>· and</th> <th></th>		_		1						matarial			cy/ dex	(et etro-	-	otruo	· and	
2 12.3 9 12 PL meters 0.5 colour, secondary and minor components. 2.5 9.8 9.8.9 Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt Apphalt Image: Secondary and minor components. D J J Asphalt J Image: Secondary and minor components. D J J Asphalt J Image: Secondary and minor components. D J J J J J Image: Secondary and minor components. D J <td>nod</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>phic lo</td> <td>sificati</td> <td></td> <td></td> <td></td> <td>sture</td> <td>sistenc sity in</td> <td></td> <td></td> <td></td> <td></td> <td>S</td>	nod						phic lo	sificati				sture	sistenc sity in					S
E + 1.4ppm - - FILL: SAND, coarse grained, brown, trace of M B + 0.3ppm - - - - - B + 0.3ppm - - - - - - B + 0.3ppm - - - - - - - B + 0.3ppm - - - - - - - - B + 0.3ppm - - - - - - - - B + 0.10 - - - - - - - - - - - - - - - <t< td=""><td>e e</td><td>a l</td><td>PID</td><td></td><td>RL</td><td></td><td>grap</td><td>clas</td><td>soil type: plastic colour, second</td><td></td><td></td><td>mois conc</td><td>cons dent</td><td>1</td><td></td><td></td><td></td><td></td></t<>	e e	a l	PID		RL		grap	clas	soil type: plastic colour, second			mois conc	cons dent	1				
14ppm - FILL: SAND, coarse grained, brown, trace of gravel. M E + 0.3ppm - - FILL: Sliv SAND, medium - coarse grained, dark - grey. B - - - - FILL: Sliv SAND, medium - coarse grained, dark - grey. - - FILL: Sliv SAND, medium - coarse grained, dark - grey. - - FILL: SAND, coarse grained, brown. - - I 1.0 - - I 1.5 - - I 1.5 - - I 1.5 - - I 1.5 - -							E		ASPHALT:			D			A	sphalt		
gravel. - - Britishing - - 0.5 - - 0.5 - - 0.5 - - - - - 0.5 - - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td> -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						-												
Image: state of the sever location. 0.3ppm - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td>grained, brown, trace</td> <td>of</td> <td>М</td> <td>1</td> <td></td> <td>F</td> <td></td> <td></td> <td></td>					-	_				grained, brown, trace	of	М	1		F			
Image: Second system 0.3ppm - - - Image: Second system 0.5 - - - Image: Second system - -								×										_
E + 0.3ppm - - - - - - - - - - - - - - - - - - -																		
E + 0.3ppm - - FILL: Slity SAND, medium - coarse grained, dark grey. - - - <				C.C.F.		_		*										_
Brey					-	0. <u>5</u>		×	FILL: Silty SAND, m	edium - coarse grained	dark		-					_
0.3ppm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.10 1.0 1.0 1.0 1.0 1.10 1.0 1.0 1.0 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15								×			,							_
0.3ppm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.10 1.0 1.0 1.0 1.0 1.10 1.0 1.0 1.0 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15								*										
0.3ppm - 1.0 - - 1.0 - - 1.0 - - 1.0 - - 1.0 - - 1.0 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>						-												-
Image: state of the second st						_			FILL: SAND, coarse	grained, brown,		-						_
- - - - - - 1.5 - Borehole BH04 terminated at 1.5m - - - - -								×	1 mm 0/ 110, 111.	granod, sterm								_
- - - - - - 1.5 Borehole BH04 terminated at 1.5m - -								×										
Borehole BH04 terminated at 1.5m refusal at 1.5m due to sewer location.					1	1. <u>U</u>												
Borehole BH04 terminated at 1.5m refusal at 1.5m due to sewer location.						_		*										_
Borehole BH04 terminated at 1.5m refusal at 1.5m due to sewer location.								×										_
Borehole BH04 terminated at 1.5m refusal at 1.5m due to sewer location.								×										
Borehole BH04 terminated at 1.5m refusal at 1.5m due to sewer location.						_		×										-
Borehole BH04 terminated at 1.5m location.						-		×										-
_ location.						1.5		×										
									Borehole BH04 term	inated at 1.5m							due to sewer	
						-												-
						_												-
																		_
						_												-
Penetration Penetration notes, samples, tests classification symbols and consistency/density index	method	<u></u>					Ĺ		notes, samples, tests		classific	cation sy	mbols ar	 d		consistency/d	ensity index	
DT diatube 1 2 3 4 U ₅₀ undisturbed sample 50mm diameter soil description VS very soft VS very soft U ₅₃ undisturbed sample 63mm diameter based on unified classification S soft	DT	diatub		ľ	1 2	234	— no res	sistance	U ₅₀ undisturbed s	sample 50mm diameter	soil des	cription				VS	very soft	
SS soild stem flight auger ranging to hollow stem flight auger D disturbed sample system F firm M standard penetration test (SPT) St stiff	HS	soild s hollow	stem flig / stem f			<u> </u>	rangir ⊫ refus;	ng to al	D disturbed san N standard pen	netration test (SPT)						St	stiff	
VT V Bit, T Bit N* SPT - sample recovered moisture VSt very stiff AH air hammer water Nc SPT with solid cone D dry H hard CP cable percussive tot too too too too too too too too too	AH	air har	mmer		wa	ter			Nc SPT with soli	id cone	D dr	ry				н	hard	
CP cable percussive V vane shear (kPa) M moist Fb friable HA hand auger Image: NDD non-destructive digging Image: NDD non-destructive digging Image: NDD Non-destructive digging Image: NDD	HA	hand a	auger		_				P pressuremete		W we	<i>i</i> et	t			VL	very loose	
RC rock corer water inflow E environmental sample WL liquid limit MD medium dense water outflow R refusal D dense VD very dense									E environmenta	al sample						MD D	dense	;


BOREHOLE + PID GEOTLCOV25397AA.GPJ COFFEY.GDT 26.5.15

C		f	e	y	7							_						
0			0	y									Boreho	le No.		BH06	6	
En	g	in	ee	ring	L	og	- E	Bor	ehole				Sheet Office 、	Job No	D.:	1 of 1 GEO1	LCOV25	397AA
Client	-			TOG									Date st			13.5.2		
Princi	pal	:										[Date co	omple	ted:	13.5.2	015	
Projec	ct:			Limit	ed (Cont	amin	atior	n Site Assessme	ent		L	ogged	l by:		KA		
Boreh	ole	Loc	ation	Surry	/ Hi	lls Sl	hopp	ing \	/illage, Surry Hi	ills NSW		(Checke	ed by:		MG		
drill mo			nountii			AUGEF	२		Easting:	slope:	-90°			F	R.L. Sı	urface:		
hole dia drilli			matic		20mm	n mm	mate	rial su	Northing bstance	bearing	g:			d	latum:			
2	c penetration	water	DID	notes samples, tests, etc	RL	depth	graphic log	classification symbol	soil type: plasticity	material or particle character / and minor compon		moisture condition	consistency/ density index	¹⁰⁰ A pocket ²⁰⁰ A penetro-			ructure and nal observati	ons
HA				E + 74ppm	-	-			FILL: Silty SAND, med brown, with trace of gra	ium to coarse graine avel.		D			Fi			-
						0.5			Borehole BH06 termina	ated at 0.4m					re	fusal at 4.0		
metho DT PT SS HS VT AH CP HA NDD RC		hollow V Bit, air har cable hand a	ube tem flig stem fl T Bit nmer percuss auger estructiv	ht auger ight auger sive ve digging		10/1 on d wate		er level wn	U ₆₃ undisturbed sam D disturbed samp	ration test (SPT) ecovered cone a)	soil desc based or system D dr M mo W we Wp pla	St stiff moisture VSt very stiff D dry H hard M moist Fb friable W wet VL very loose Wp plastic limit L loose					nse	

C	1	1	Ff	P	у	7							_						
-				C	y								E	Boreho	le No.		BH07		
Ε	ng	gi	ne	e	ring	L	og	- E	Sor	ehole				Sheet Office 、	Job No	0.:	1 of 1 GEOTI	.COV2539	97AA
	ent:				TOG									Date st			13.5.20		
Pri	ncip	al:											[Date co	omple	ted:	13.5.20	915	
Pro	oject	:			Limit	ed (Cont	amin	atior	n Site Assessm	ent		l	_oggeo	l by:		KA		
Во	reho	le L	_008	ation:	Surry	/ Hi	lls Sl	hopp	ing \	/illage, Surry H	ills NSW		(Checke	ed by:		MG		
drill	mod	el ar	nd m	ountir	ng: H.	AND .	AUGEF	ł		Easting:	slope:	-90°			F	R.L. S	urface:		
	e diar illin			natio		20mm	ı mm	mate	rial su	Northing bstance	bearing	g:			d	latum	:		
	_	_			notes						material			cy/ dex	ket etro-	л.	- 4 -1	eture and	
poq	penetration		Ъ		samples, tests, etc			graphic log	classification symbol				moisture condition	consistency/ density index	ady pocket benetro-			icture and al observation	s
method	12		water	PID		RL	depth metres	grap	clas sym	soil type: plasticity colour, secondar	or particle characte y and minor compon	ristics, ients.	moi	cons	877 300 357 300				
НA										FILL: Silty SAND, med brown, with tree roots		ed,	D			F	ill		
					E		-												-
							-												-
							_												_
					Е														
							-												-
							0. <u>5</u>												
		8					_												_
		333					<u> </u>	xxx		Borehole BH07 termin	ated at 0.8m					R	tefusal at 0.8	n, hole refusal	
							-												-
							1. <u>0</u>												
																			_
							-												-
							-												_
							_												-
							1.5												
							-												-
							_												_
							-												-
	thod						2.0 etration			notes, samples, tests		classifica		mbols ar	 d			density index	
DT PT		pu	atube Ish tu	be	bé au		34	- no res	sistance	U ₅₀ undisturbed sa U ₆₃ undisturbed sa	mple 50mm diameter mple 63mm diameter	soil desc based on		classifica	tion		VS S F	very soft soft firm	
SS HS VT		ho		stem fl	ht auger ight auger			rangir ⊢ refusa	al	D disturbed samp N standard pene N* SPT - sample	tration test (SPT)	system moisture	,			-	F St VSt	firm stiff very stiff	
AH CP		air	ham		sive	wat		/98 wate	ar level	Nc SPT with solid V vane shear (kF	cone Pa)	D dry M mo	y pist				H Fb	hard friable	
HA NC	D	ha no	and a on-de	uger structiv	ve digging		on d	/98 wate ate shower inflow	wn	P pressuremeter Bs bulk sample			astic limit				VL L	very loose loose	
RC		roo	ck co	rer				er outflov		E environmental R refusal	sample	W _L liqi	uid limit				MD D VD	medium dense dense very dense	;

C	-		ff	0	y	7							_				
C				C	y								E	Boreho	le No	0.	BH08
Ε	ng	gi	n	ee	ring	L	og	- E	Bor	ehole				Sheet Office 、	Job N	No.:	1 of 1 GEOTLCOV25397AA
Clie	ent:				TOG	A G	ROU	Р					[Date st	arteo	d:	13.5.2015
Pri	ncip	al:											[Date co	ompl	ete	d: 13.5.2015
Pro	ject	:			Limit	ed (Cont	amin	atior	n Site Assessme	nt		l	_oggeo	d by:		KA
	-		Loca	ation	Surr	/ Hi	lls Sl	hopp	ina \	/illage, Surry Hil	ls NSW			Checke		/:	MG
				nountii	-		AUGEF			Easting:	slope:	-90°					. Surface:
	diar					20mm	n mm			Northing	bearing	g:				dat	um:
dr	_	_	nfor	matio				mate		bstance				. ×		5	
method	L Denetration		water	DID	notes samples, tests, etc		depth metres	graphic log	classification symbol	n soil type: plasticity o colour, secondary	naterial or particle character and minor compon	ristics, ients.	moisture condition	consistency/ density index	100 A pocket	a	structure and additional observations
HA				(1	E + 0.9ppm E + QC1,QC1/	-	_			FILL: Silty SAND, media brown, with trace of grav		ed,					Fill -
							0.5			Borehole BH08 terminat	ted at 0.4m						refusal due to tree roots, refusal at 0.4m.
me DT PT SS HS VT AH CP HA ND RC	D	di pu so N ai ca ha no	ollow Bit, 1 ir han able p and a	ube em flig stem fl Bit nmer bercuss uger estructiv	iht auger light auger sive ve digging		er 10/1 on d wate		er level wn		ation test (SPT) covered one)	soil desc based on system D dr M mo W we Wp pla	il description VS very soft sed on unified classification S soft stem F firm bisture VSt very stiff dry H hard moist Fb friable wet VL very loo: o plastic limit L loose liquid limit MD medium				S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

C	1		f	6	y	7							_				
-				C	y								E	Boreho	le N	0.	BH09
Ε	n	g	in	ee	ring	L	og	- E	Sor	ehole				Sheet Office 、	Job I	No.:	1 of 1 GEOTLCOV25397A
	ent				TOG									Date st			13.5.2015
Pri	ncip	pal:											[Date co	ompl	eted	13.5.2015
Pro	ojec	ct:			Limit	ed (Cont	amir	natior	n Site Assessmen	t		L	_oggeo	l by:		MR
Во	reh	ole	Loc	ation	Surry	/ Hi	lls Sl	hopp	oing \	/illage, Surry Hills	s NSW		(Checke	ed by	y:	MG
_				nounti	-		AUGE			Easting:	slope:	-90°			-	R.L.	Surface:
hole				matio		20mm	n mm	moto	rial ou	Northing bstance	bearine	g:				datu	m:
	-	_		maur	notes					DStance				×e ×e	t f	5	
R		penetration			samples, tests, etc			graphic log	ficatio	ma	terial		ure tion	stency ty inde	pocket	meter	structure and additional observations
method		원 23	water	DIA	10313, 010		depth	graph	classification symbol	soil type: plasticity or colour, secondary ar	particle character	ristics, ients.	moisture condition	consistency/ density index	kF 20 00 20 00	Pa	
Η		23			E +					FILL: SAND, grey brown, fragments.			М		6 4	0 4	
					1.6ppm	-	-			liagments.							
⊢							<u> </u>	$\sim \sim \sim$		Borehole BH09 terminated	d at 0.3m						refusal at 0.3m.
							-										
							0.5										
																	-
							-										
							_										
							_										
							-										
							1. <u>0</u>										-
							_										
							-										
							_										
							_										
							1.5										-
							_										
							_										
							-										
							_										
							2.0										
me DT	tho		diatub	e			etration	1		notes, samples, tests U ₅₀ undisturbed sample		classific soil desc	ription				consistency/density index VS very soft
PT SS	;	l	oush t soild s	ube tem flig	ht auger			no res rangir refusa	sistance ng to al	U ₆₃ undisturbed sample D disturbed sample	e 63mm diameter	based on system	unified (classifica	tion		S soft F firm
HS VT		١	/ Bit, [·]	T Bit	light auger	00000				N standard penetration	vered	moisture					St stiff VSt very stiff
AH CF HA)	(percus	sive	wat	10/1	/98 wate		Nc SPT with solid cone V vane shear (kPa) P pressuremeter	•	D dr M ma W we	oist				H hard Fb friable VL very loose
NE RC	D	I	nand a non-de rock c	estructi	ve digging			late sho er inflow		Bs bulk sample E environmental sam	ple	Wp pla	astic limit uid limit				L loose MD medium dense
						-	wate	er outflov	N	R refusal							D dense VD very dense

BOREHOLE + PID GEOTLCOV25397AA.GPJ COFFEY.GDT 26.5.15

CO	f	e	V	7							-	Roreho	le No.	
						_						Sheet	IL INC.	BH3B 1 of 1
Eng	in	9 e	ring	L	og	- E	Sor	ehole					Job No.	
Client:			TOG	4 G	ROU	Р					0	Date st	arted:	13.5.2015
Principal	:										0	Date co	omplete	ed: 13.5.2015
Project:			Limit	ed (Cont	amin	atio	n Site Asses	sment		L	oggeo	l by:	KA
Borehole	Loc	ation	Surry	/ Hil	ls Sl	hopp	ing \	/illage, Surry	y Hills NSW		(Checke	ed by:	MG
drill model	and n	nounti	ng: XI	L TRU	JCKED			Easting:	slope:	-90°			R.L	L. Surface:
hole diame drilling		matic		20mm	mm	mato	rial eu	Northing bstance	bearing	g:			dat	tum:
		matro	notes					Distance				ex	, to the test	
method 5 7 8 9 9 9 9 9 9	water	DID	samples, tests, etc	RL	depth metres	graphic log	classification symbol		material sticity or particle character ndary and minor compon		moisture condition	consistency/ density index	¹⁰⁰ A pocket ²⁰⁰ A penetro- 400 meter	
ADT								Some gravel.	medium to coarse graine medium to coarse graine gravel.					Asphalt
method DT PT SS HS VT AH CP HA NDD RC	hollow V Bit, 1 air han cable µ hand a	ube em flig stem fl Bit nmer bercuss uger estructi	ht auger ight auger sive ve digging		10/1 on d wate		er level wn	U ₆₃ undisturbed D disturbed N standard J N* SPT - san Nc SPT with s V vane shea P pressuren Bs bulk samp	ed sample 50mm diameter ed sample 63mm diameter sample penetration test (SPT) nple recovered solid cone ar (kPa) neter		ription unified o	classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

TOGA GROUP

Client:

Principal: Project:

Limited Contamination Site Assessment

Borehole Location: Surry Hills Shopping Village, Surry Hills NSW

drill model						Easti		slope:	-90°			Surface:
hole diame	eter:		120mm			North	ning:	bearing:			datu	m:
drilling i	infor	matio	n			mat	erial s	ubstance				
method 5 T penetration	water	DID	notes samples, tests, etc	well details	depth RL metres	graphic log	classification symbol	material soil type: plasticity or particle chan colour, secondary and minor cor	racteristics, mponents.	moisture condition	consistency/ density index	structure and additional observations
Артфт			E + 1.0ppm	0 0				CONCRETE: FILL: SAND, coarse grained, brown, w gravel/silt, fragments of brick.	vith trace of	М	-	Concrete Fill
			E + 1.3ppm		1							-
			E + 1.5ppm		-			FILL: Clayey SAND, medium grained, trace of gravel.				-
					2			FILL: Sandy GRAVEL, coarse grained grey. FILL:Silty CLAY: dark grey, with trace			L	
												-
	3.0m				-		SP	SAND: coarse grained, brown, pale gr	ey.	W		Alluvium/Aeolian
							-					-
							-					-
								Borehole terminated at 5.4m				Refusal at 5.4m, top of bedrock
					<u>6</u>							-
					-	-						-
					<u>7</u> 							-
method				penetra	- - 8	-	note	s, samples, tests	classification s	vmbole	and	
DT PT SS HS VT AH CP HA NDD RC	DT diatube 1 2 3 4 PT push tube SS soild stem flight auger IS hollow stem flight auger /T V Bit, T Bit VH air hammer CP cable percussive IA hand auger NDD non-destructive digging RC rock corer			0/1/98 water le	to	U₅₀ D N N P Bs R E PID WS PZ ALT	s, samples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer air lift test	classification s; soil description based on unified system D dry M moisture D dry W wet Wp plastic lim WL liquid limit	l classifi		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

PIEZO + PID GEOTLCOV25397AA.GPJ COFFEY.GDT 26.5.15

Form GEO 5.10 Issue 3 Rev.0

Borehole No. BH01/MW01 Sheet 1 of 1 GEOTLCOV25397AA Office Job No.: 13.5.2015 Date started: 13.5.2015 Date completed: KA Logged by:

MG

Checked by:

TOGA GROUP

Client:

Principal:

Project:

Limited Contamination Site Assessment

Borehole Location: Surry Hills Shopping Village, Surry Hills NSW

drill model & r					Easti		slope:	-90°			Surface:
hole diameter	r:	120mm			North	ning:	bearing:			datu	ım:
drilling inf	formatio	n			mat	erial s	ubstance				
method penetration	water PID	notes samples, tests, etc	well details	depth RL metres	graphic log	classification symbol	material soil type: plasticity or particle cha colour, secondary and minor co	racteristics, mponents.	moisture condition	consistency/ density index	structure and additional observations
ADT				_			ASPHALT:		D		Asphalt
4		E					FILL: SAND, coarse grained, brown, v gravel. FILL: Sandy GRAVEL, coarse grained with trace of brick fragments.		Μ		Fili
	•			-	~~~~	SP	SAND: coarse grained, dark grey, with	n some silt.		L	Alluvium/Aeolian
	2.8m			3		CL	Silty CLAY: low-medium plasticity, dar		W	S	
						SW	Silty SAND: fine-medium grained, dar trace of clay.	k grey, with	W	L	
				- - 5_		- - -					
				- - - 6		· ·					
				_							-
			<u>60260</u>	- - 7_ - -			Borehole terminated at 6.4m				Hole drilled to top of bedrock at 6.4m. – – – –
PT SS	V Bit, T Bit air hammer cable percu hand auger	flight auger	water Mater Mater Mater Mater Mater Mater Mater Mater Mater Mater	2 3 4 no resistance refusal U ₅₀ undisturbed sample 50mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone P refusue P moisture moisture					consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

Form GEO 5.10 Issue 3 Rev.0

Sheet 1 of 1 GEOTLCOV25397AA Office Job No.: 13.5.2015 Date started: 13.5.2015 Date completed: KA

MG

Logged by: Checked by:

Borehole No.

BH02B/MW02

TOGA GROUP

Client:

Principal:

Project:

Limited Contamination Site Assessment

Borehole Location: Surry Hills Shopping Village, Surry Hills NSW

drill model & mounting: XL TRUC		Easting:	slope: -90°	lecked by	R.L. Surface:
hole diameter: 120mm		Northing:	bearing:		datum:
drilling information		material s	5		
notes sample tests, e 1 2 3		aphic log assification mbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	Solutional observations
E+ 0.9ppn			ASPHALT: FILL: Silty SAND, coarse grained, brown, with trace of gravel	M	Asphalt Fill
2.7m		SP	Silty SAND: medium to coarse grained, dark grey. SAND: coarse grained, brown. Silty CLAY: low - medium plasticity, dark grey.	W	L Alluvium/Aeolian
		SW SW	Silty SAND: medium - coarse grained, dark grey.		
method DT diatube PT push tube SS solid stem flight auger HS hollow stem flight aug VT V Bit, T Bit AH air hammer CP cable percussive HA hand auger NDD non-destructive diggir RC rock corer	water V 10/1/98 water le on date shown	tance D to N N* Nc P Bs	undisturbed sample 50mm diameter soil descript	ified classificat	VS very soft

Form GEO 5.10 Issue 3 Rev.0

Sheet 1 of 1 GEOTLCOV25397AA Office Job No.: 13.5.2015 Date started: 13.5.2015 Date completed: KA Logged by:

MG

Checked by:

Borehole No. BH05/MW03

TOGA GROUP

Client:

Principal: Project:

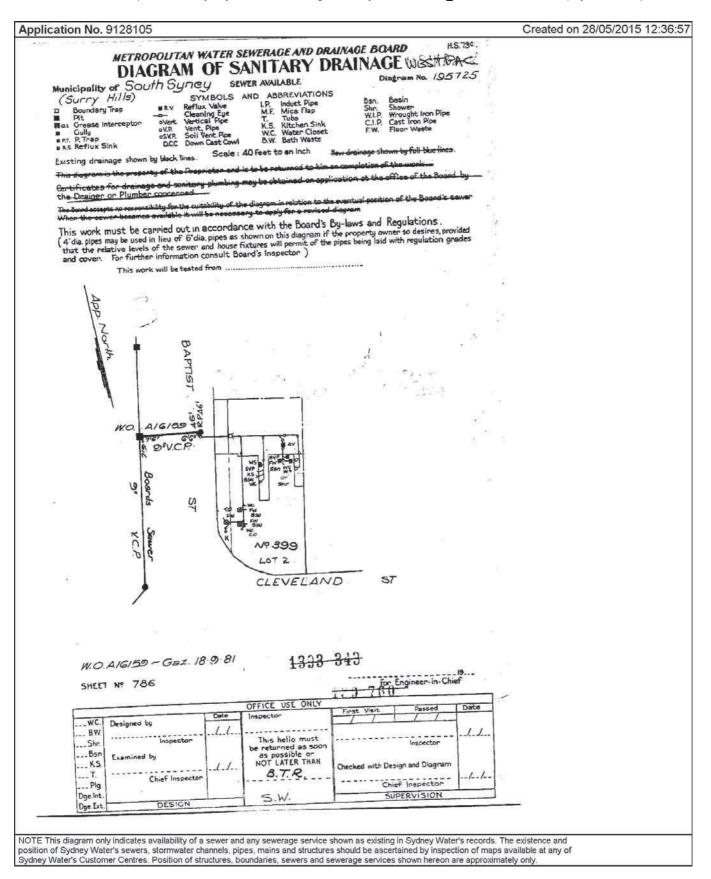
Limited Contamination Site Assessment

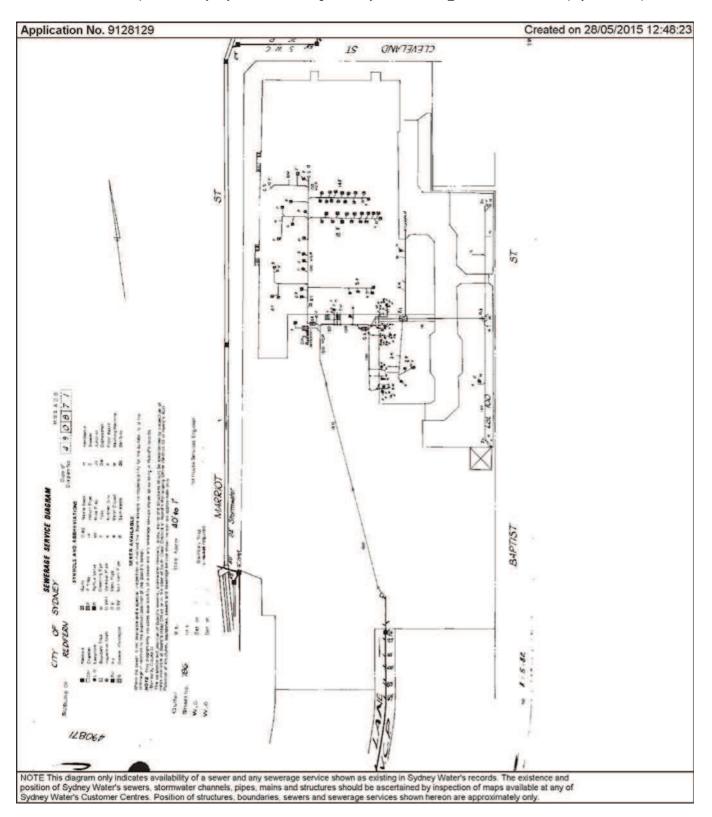
Borehole Location: Surry Hills Shopping Village, Surry Hills NSW

				XL TC BIT	_		Easti		slope:	-90°	CRCUT		Surface:
hole	diam	eter:		120mm			North	ning:	bearing:			datu	ım:
dri		infor	matio	n			mate	erial s	ubstance				
method	 benetration 	water	PID	notes samples, tests, etc	well details	depth RL metres	graphic log	classification symbol	material soil type: plasticity or particle cha colour, secondary and minor co	racteristics, mponents.	moisture condition	consistency/ density index	structure and additional observations
RC						_			CONCRETE: (120mm)				
SSTRC				E+0.1ppm	0.0	-			FILL: SAND, medium coarse, pale bro gravel				FILL
				E+0.1ppm		0. <u>5</u> - -			FILL: Clayey SAND, fine-medium grai pale brown,	ined, brown,			FILL
				E+0.1ppm		1. <u>0</u> -							- - - -
						1. <u>5</u> -			FILL: SAND, fine-medium grained, pa		D		
				E+0.1ppm		2. <u>0</u> - -			brown with some clay		U		- - - - - - - - - -
						2. <u>5</u> -		SC	Sandy CLAY: fine medium grained, papele brown	ale orange,	Wp	MD	Residual soil
				E+0.9ppm QC5,QC5A		3. <u>0</u>		SC	Sandy CLAY: pale orange, pale brown mottled, some rock fabric (sandstone)	n, white,		MD	Residual soil
						_			Borehole terminated at 3.2m				Refusal
						3. <u>5</u> - -	-						
meth DT PT SS HS VT AH CP HA NDD RC	method penetration DT diatube PT push tube SS soild stem flight auger IS hollow stem flight auger /T V Bit, T Bit XH air hammer CP cable percussive IA hand auger NDD non-destructive digging RC rock corer				0/1/98 water le	to	note U₅₀ D N* Nc P Bs R E PID WS PZ ALT	s, samples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer air lift test	classification s soil description based on unified system moisture D dry M moist W wet Wp plastic lim WL liquid limit	i d classifi		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

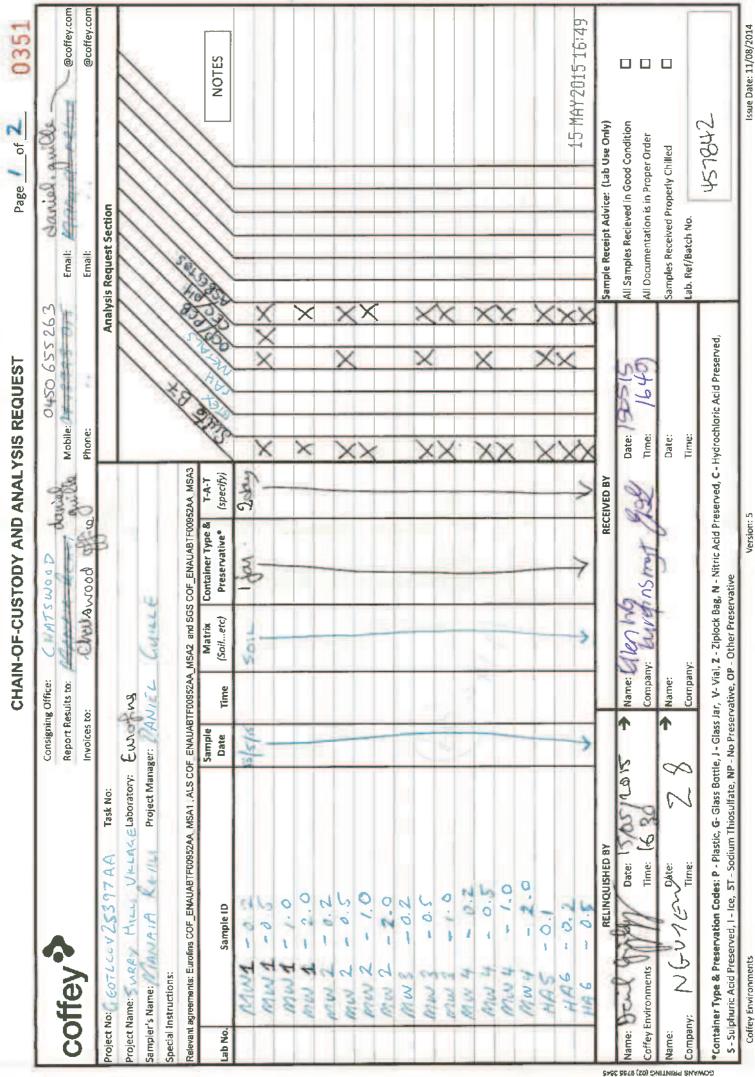
Form GEO 5.10 Issue 3 Rev.0

Sheet 1 of 1 GEOTLCOV25397AA Office Job No.: 28.5.2015 29.5.2015


Date started: Date completed: AF Logged by:


Borehole No.

Checked by:


BH10/MW04

Appendix B – Dial Before You Dig

Appendix C – Laboratory Analytical Reports

			CHAII	N-OF-CU	STODY A	ND ANAL'	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	Page 2 of 2	- 0352
coffey 🎝		Consigning Office: Report Results to: Invoices to:	g Office: sults to:	CHATS	ine B	-	Mobile: Phone:	Email: Email:	@coffey.com
Project No:	Task No:							Emain: Iveie Domoet Contion	@coffey.com
Project Name: Sampler's Name:	Laboratory: Project Manager:	2	PAN G	Empline					111
Special Instructions: Relevant agreements: Eurofins COF_EMAUABTF00952AA_MSA1_ALS COF_ENAUABTF00952AA_MSA2_and SGS COF_ENAUABTF00952AA_MSA3	2AA MSA1 ALS CO	DF ENAUABI	F00952AA	MSA2 and SG	S COF ENAUABTI	-00952AA MSA3	the line	all all they	/
Lab No. Sample ID		Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	* (specify)	Lef 1 1	A CA CA	NOTES
HAF-01 QC1		10/5/9		Set	19au	Coped			
2. Bray OCZ		-		MARE		- 4 C			
1	N	>		+				X	
HA5-0.3 HA7-0.3		12/2/11	10	205	1 Jan.	St.			
HA8 -0.2		13/4/5		>	->	\$	X		
								51	15 MAY 2015 16:49
RELINQUISHED BY						RECEIVED BY		Sample Receipt Advice: (Lab Use Only)	
Name: Context Date: Date: Coffey Environments	cion/so/	↑	Name: U Company:	Alenno	fins mit	Prof.	Date: 190515 Time: 1049	All Samples Recieved in Good Condition All Documentation is in Proper Order	
Name: N 60422 Date: Company: N	28	Ŷ	Name: Company:		0		Date: Time:	Samples Received Properly Chilled Lab. Ref/Batch No.	
*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, S - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative	tic, G- Glass Bottl m Thiosulfate, NP	e, J - Glass Ja - No Preser	ar, V-Vial, vative, OP	Z - Zipiock Ba - Other Prese	g, N - Nitric Acid rvative	Preserved, C - I	Hydrochloric Acid Preserved,	457842	4
Coffey Environments					Version: 5	on: 5			Issue Date: 11/08/2014

COWANG PRINTING (02) 9755 3545

Issue Date: 11/08/2014

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:

Daniel Guille

Report Project name Project ID Received Date 457842-W SURRY HILLS VILLAGE GEOTLCOV25397AA May 15, 2015

Client Sample ID			RIN BLANK	TRIP BLANK
Sample Matrix			Water	Water
Eurofins mgt Sample No.			S15-My14536	S15-My14537
Date Sampled			May 13, 2015	May 13, 2015
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-
BTEX				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	74	73
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions			
Naphthalene ^{N02}	0.02	mg/L	< 0.02	-
TRH C6-C10	0.02	mg/L	< 0.02	-
TRH C6-C10	0.02	mg/L	-	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	-
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	-	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	-
Volatile Organics				
Naphthalene ^{N02}	0.02	mg/L	-	< 0.02

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 15, 2015	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	May 15, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 15, 2015	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Volatile Organics	Sydney	May 15, 2015	7 Day
Method: E016 Volatile Organic Compounds (V/OC)			

- Method: E016 Volatile Organic Compounds (VOC)

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Nam	Level 18 Chatswo NSW 20 e: SURRY	ood)67 HILLS VILLAGE	el Tower 799 Pa	cific Highway		R	order Repor Phone ax:	t #:		+61		06 10 06 10			Received:May 15, 2015 4:49 PMDue:May 19, 2015Priority:2 DayContact Name:Daniel Guille
Project ID:	GEOTL	COV25397AA													Eurofins mgt Client Manager: Charl Du Preez
		Sample Detail			Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity	
	ere analysis is o								<u> </u>						
	poratory - NATA		4271				ļ		_					Х	
	atory - NATA Sit				X	X	Х	Х	Х	Х	Х	Х	Х	Х	X
	oratory - NATA S	ite # 20794							─						
External Labo Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
MW1_0.2	May 13, 2015		Soil	S15-My14516		Х									
MW1_0.5	May 13, 2015		Soil	S15-My14517	Х		Х	Х	Х	Х			Х	Х	x
MW1_1.0	May 13, 2015		Soil	S15-My14518		Х									
MW1_2.0	May 13, 2015		Soil	S15-My14519	Х				_	Х			Х		
MW2_0.2	May 13, 2015		Soil	S15-My14520		Х			\vdash						
MW2_0.5	May 13, 2015		Soil	S15-My14521	X			Х	X	Х			Х		
MW2_1.0	May 13, 2015		Soil	S15-My14522	Х	<u> </u>			—	Х			Х		
MW2_2.0	May 13, 2015		Soil	S15-My14523		Х			—	<u> </u>					
MW3_0.2	May 13, 2015		Soil	S15-My14524		Х									

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Name Project ID:	Level 18, Tower B, 0 Chatswood NSW 2067	Citadel Tower 799 Pa	cific Highway		R P	rder epor hone ax:	t #:			2 94	06 10 06 10			Received: Due: Priority: Contact Nar Eurofins	May 15, 2015 4:49 PM May 19, 2015 2 Day Daniel Guille Client Manager: Charl Du Preez
	Sample D	etail		Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity		
	ere analysis is conducted														
	oratory - NATA Site # 1254	& 14271		x	v	X	v	v	V	v	V	x	X X		
	ntory - NATA Site # 18217 ratory - NATA Site # 20794			<u> </u>	Х	~	X	Х	Х	Х	Х		<u> </u>		
External Labor															
MW3_0.5	May 13, 2015	Soil	S15-My14525	Х			Х	Х	Х			Х			
MW3_1.0	May 13, 2015	Soil	S15-My14526	X					Х			Х			
MW4_0.2	May 13, 2015	Soil	S15-My14527		Х										
MW4_0.5	May 13, 2015	Soil	S15-My14528	Х			Х	Х	Х			Х			
MW4_1.0	May 13, 2015	Soil	S15-My14529	X					Х			Х			
MW4_2.0	May 13, 2015	Soil	S15-My14530		Х										
HA5_0.1	May 13, 2015	Soil	S15-My14531	X			Х	Х	Х			Х			
HA6_0.2	May 13, 2015	Soil	S15-My14532	X			Х	Х	Х			Х			
HA6_0.5	May 13, 2015	Soil	S15-My14533	Х					Х			Х			
HA7_0.1	May 13, 2015	Soil	S15-My14534	Х					Х			Х			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Name	Lev Cha NS\	vel 18, atswoo W 2067			cific Highway		R	order Repor Phone ax:	t #:			2 94	06 10 06 10				Due Prie	ceived: e: ority: ntact Nam	ie:	May 15, 2015 4:49 PM May 19, 2015 2 Day Daniel Guille	
Project ID:			DV25397AA															Eurofins	mqt	Client Manager: Charl D	u Preez
		5	Sample Detail			Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity						
Laboratory wh	ere analysis	s is coi	nducted																		
Melbourne Lat				271											Х	-					
Sydney Labora						X	X	X	Х	X	Х	Х	Х	Х	Х	-					
Brisbane Labo		TA Site	e # 20794			<u> </u>	 									-					
External Labor							 			 						-					
QC1	May 13, 20			Soil	S15-My14535	 	 			 	Х			Х		-					
RIN BLANK	May 13, 20			Water	S15-My14536	<u> </u>	<u> </u>			<u> </u>		Х				-					
TRIP BLANK	May 13, 20			Water	S15-My14537	<u> </u>	<u> </u>			<u> </u>			Х			-					
HA5_0.3	May 14, 20			Soil	S15-My14538	X	<u> </u>			<u> </u>	Х			Х		ļ					
HA7_0.3	May 14, 20)15		Soil	S15-My14539	X	<u> </u>			<u> </u>	Х			Х							
HA8_0.2	May 13, 20)15		Soil	S15-My14540	Х			Х	Х	Х			Х]					

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

-	_		^

IERWIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM	I Fractions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM	I Fractions				
Naphthalene	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM	I Fractions				
TRH C6-C9	%	83	70-130	Pass	
TRH C10-C14	%	101	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	97	70-130	Pass	
Toluene	%	94	70-130	Pass	
Ethylbenzene	%	92	70-130	Pass	
m&p-Xylenes	%	94	70-130	Pass	
o-Xylene	%	93	70-130	Pass	
Xylenes - Total	%	94	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene	%	106	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
TRH >C10-C16	%	98	70-130	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Charl Du Preez Ryan Hamilton Ryan Hamilton Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Volatile (NSW)

Glenn Jackson National Laboratory Manager Pirel report - this Report software are previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins, Ingl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins is the liable for cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins is the person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins is indicated otherwise, the tests wereave, the test serve of the person of the expective for expecting the test serve of the intert expecting the test serve of the intert expecting the test serve of the intert expecting the test serve of test serves and test serves of test serves and test serves of test serves and test serves of test se

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:

Daniel Guille

Report Project name Project ID Received Date **457842-S** SURRY HILLS VILLAGE GEOTLCOV25397AA May 15, 2015

Client Sample ID			MW1_0.5	MW1_2.0	MW2_0.5	MW2_1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S15-My14517	S15-My14519	S15-My14521	S15-My14522
Date Sampled			May 13, 2015	May 13, 2015	May 13, 2015	May 13, 2015
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	64	120	< 50	71
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	64	120	< 50	71
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	77	78	75	76
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	140	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.4	3.3	< 0.5	2.1
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.6	3.3	0.6	2.4
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.9	3.3	1.2	2.6
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	0.8	< 0.5	0.7
Benz(a)anthracene	0.5	mg/kg	1.1	2.3	< 0.5	1.5
Benzo(a)pyrene	0.5	mg/kg	0.9	2.1	< 0.5	1.6
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	1.4	1.2	< 0.5	2.1
Benzo(g.h.i)perylene	0.5	mg/kg	0.8	1.2	< 0.5	0.7
Benzo(k)fluoranthene	0.5	mg/kg	1.2	1.8	< 0.5	0.8
Chrysene	0.5	mg/kg	1.2	2.0	< 0.5	1.4
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5

Client Sample ID			MW1_0.5	MW1_2.0	MW2_0.5	MW2_1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S15-My14517	S15-My14519	S15-My14521	S15-My14522
Date Sampled			May 13, 2015	May 13, 2015	May 13, 2015	May 13, 2015
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	2.3	5.2	< 0.5	3.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	0.7	1.1	< 0.5	0.6
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	1.0	3.2	< 0.5	2.8
Pyrene	0.5	mg/kg	2.2	4.6	< 0.5	3.0
Total PAH*	0.5	mg/kg	13	27	< 0.5	19
2-Fluorobiphenyl (surr.)	1	%	111	121	103	101
p-Terphenyl-d14 (surr.)	1	%	102	111	105	90
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.2	mg/kg	< 0.2	-	< 0.2	-
Toxaphene	1	mg/kg	< 1	-	< 1	-
Dibutylchlorendate (surr.)	1	%	118	-	111	-
Tetrachloro-m-xylene (surr.)	1	%	112	-	103	-
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PCB*	0.1	mg/kg	< 0.5	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	118	-	111	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	63	-	-	
pH (1:5 Aqueous extract)	0.1	pH Units		-	-	-
% Moisture	0.1	%	11	14	8.1	8.5
Ion Exchange Properties						

Client Sample ID Sample Matrix Eurofins mgt Sample No.			MW1_0.5 Soil S15-My14517	MW1_2.0 Soil S15-My14519	MW2_0.5 Soil S15-My14521	MW2_1.0 Soil S15-My14522	
Date Sampled			May 13, 2015	May 13, 2015	May 13, 2015	May 13, 2015	
Test/Reference	LOR	Unit					
Heavy Metals							
Arsenic	2	mg/kg	5.3	4.8	< 2	2.2	
Cadmium	0.4	mg/kg	0.6	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	25	45	11	55	
Copper	5	mg/kg	120	99	7.9	14	
Lead	5	mg/kg	890	250	22	81	
Mercury	0.05	mg/kg	0.62	1.1	< 0.05	0.11	
Nickel	5	mg/kg	5.7	10	< 5	< 5	
Zinc	5	mg/kg	740	210	11	83	

Client Sample ID			MW3_0.5	MW3_1.0	MW4_0.5	MW4_1.0	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.	mgt Sample No.		S15-My14525	S15-My14526	S15-My14528	S15-My14529	
Date Sampled	e Sampled		May 13, 2015	May 13, 2015	May 13, 2015	May 13, 2015	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM F	_	-					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	500	150	
TRH C29-C36	50	mg/kg	< 50	< 50	180	65	
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	680	220	
BTEX	•						
Benzene	0.1	mg/kg	< 0.1	< 0.1	0.2	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	77	77	78	73	
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	600	190	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	12	3.1	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	12	3.3	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	12	3.6	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	4.1	1.3	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	26	1.7	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	12	3.4	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	6.2	2.1	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	9.1	1.8	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	6.1	1.8	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	8.4	2.5	

Client Sample ID			MW3_0.5	MW3_1.0	MW4 0.5	MW4_1.0	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S15-My14525	S15-My14526	S15-My14528	S15-My14529	
Date Sampled			May 13, 2015	May 13, 2015	May 13, 2015	May 13, 2015	
•			Way 15, 2015	Way 13, 2015	Way 13, 2015	Way 15, 2015	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Chrysene	0.5	mg/kg	< 0.5	< 0.5	11	3.3	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	2.5	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	25	8.4	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	3.1	0.8	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	6.0	1.7	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	25	6.0	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	20	6.8	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	160	42	
2-Fluorobiphenyl (surr.)	1	%	104	110	114	108	
p-Terphenyl-d14 (surr.)	1	%	105	111	110	104	
Organochlorine Pesticides							
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-	
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-	
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-	
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-	
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-	
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-	
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-	
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-	
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	-	
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-	
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-	
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-	
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-	
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-	
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-	
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-	
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-	
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-	
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-	
Methoxychlor	0.2	mg/kg	< 0.2	-	< 0.2	-	
Toxaphene	1	mg/kg	< 1	-	< 1	-	
Dibutylchlorendate (surr.)	1	%	121	-	125	-	
Tetrachloro-m-xylene (surr.)	1	%	97	-	118	-	
Polychlorinated Biphenyls (PCB)	• <u>•</u>						
Aroclor-1016	0.5	mg/kg	< 0.5	-	< 0.5	-	
Aroclor-1232	0.5	mg/kg	< 0.5	-	< 0.5	-	
Aroclor-1242	0.5	mg/kg	< 0.5	-	< 0.5	-	
Aroclor-1248	0.5	mg/kg	< 0.5	-	< 0.5	-	
Aroclor-1254	0.5	mg/kg	< 0.5	-	< 0.5	-	
Aroclor-1260	0.5	mg/kg	< 0.5	_	< 0.5	-	
Total PCB*	0.1	mg/kg	< 0.5	_	< 0.5	-	
Dibutylchlorendate (surr.)	1	%	121	_	125	-	
	·	,,,			120		
% Moisture	0.1	%	6.6	8.2	12	13	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			MW3_0.5 Soil S15-My14525 May 13, 2015	MW3_1.0 Soil S15-My14526 May 13, 2015	MW4_0.5 Soil S15-My14528 May 13, 2015	MW4_1.0 Soil S15-My14529 May 13, 2015	
Test/Reference	LOR	Unit					
Heavy Metals							
Arsenic	2	mg/kg	< 2	< 2	3.2	5.2	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	20	44	13	13	
Copper	5	mg/kg	12	8.9	20	13	
Lead	5	mg/kg	9.0	17	180	100	
Mercury	0.05	mg/kg	< 0.05	< 0.05	0.23	0.23	
Nickel	5	mg/kg	30	12	< 5	< 5	
Zinc	5	mg/kg	24	14	240	120	

Client Sample ID			HA5_0.1	HA6_0.2	HA6_0.5	HA7_0.1	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.	mgt Sample No. S15-M		S15-My14531	S15-My14532	S15-My14533	S15-My14534	
Date Sampled			May 13, 2015	May 13, 2015	May 13, 2015	May 13, 2015	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	77	60	100	250	
TRH C29-C36	50	mg/kg	86	57	85	290	
TRH C10-36 (Total)	50	mg/kg	160	120	190	540	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	79	83	94	79	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	140	< 100	160	450	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	190	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	2.2	1.4	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.7	0.6	2.4	1.7	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	2.7	1.9	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	0.5	< 0.5	1.4	1.1	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	1.7	1.0	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	0.6	< 0.5	1.0	1.2	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	1.0	1.0	
Benzo(k)fluoranthene	0.5	mg/kg	0.6	< 0.5	1.2	1.1	

Client Sample ID			HA5_0.1	HA6_0.2	HA6_0.5	HA7_0.1	
Sample Matrix			Soil	Soil	Soil	Soil S15-My14534 May 13, 2015	
Eurofins mgt Sample No.			S15-My14531	S15-My14532	S15-My14533		
Date Sampled			May 13, 2015	May 13, 2015	May 13, 2015		
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons	Lon	Onic					
Chrysene	0.5	mg/kg	0.5	< 0.5	1.4	1.0	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	1.0	0.6	2.8	2.0	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.9	0.8	
	0.5		< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5	< 0.5		0.7	
	0.5	mg/kg			1.3 2.6		
Pyrene		mg/kg	1.0	0.6		2.0	
Total PAH*	0.5	mg/kg	4.2	1.2	15	12	
2-Fluorobiphenyl (surr.)	1	%	113	113	114	117	
p-Terphenyl-d14 (surr.)	1	%	105	105	108	111	
Organochlorine Pesticides							
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-	
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-	
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-	
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-	
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-	
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-	
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-	
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-	
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-	
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-	
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-	
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-	
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-	
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	-	
Toxaphene	1	mg/kg	< 1	< 1	-	-	
Dibutylchlorendate (surr.)	1	%	110	111	-	-	
Tetrachloro-m-xylene (surr.)	1	%	100	93	-	-	
Polychlorinated Biphenyls (PCB)							
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	_	-	
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	_	
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-		
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-		
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5			
Total PCB*	0.1	mg/kg	< 0.5	< 0.5	-		
Dibutylchlorendate (surr.)	1	111g/kg %	110	111	-	-	
	1 1	/0			-	-	
% Moisture	0.1	%	9.1	7.8	8.3	8.2	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			HA5_0.1 Soil S15-My14531 May 13, 2015	HA6_0.2 Soil S15-My14532 May 13, 2015	HA6_0.5 Soil S15-My14533 May 13, 2015	HA7_0.1 Soil S15-My14534 May 13, 2015
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	29	2.3	2.7	4.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.4
Chromium	5	mg/kg	47	5.6	8.8	13
Copper	5	mg/kg	45	37	63	76
Lead	5	mg/kg	130	63	120	370
Mercury	0.05	mg/kg	0.09	0.24	0.18	0.34
Nickel	5	mg/kg	28	< 5	< 5	8.7
Zinc	5	mg/kg	160	130	200	340

Client Sample ID			QC1	HA5_0.3	HA7_0.3	HA8_0.2	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S15-My14535	S15-My14538	S15-My14539	S15-My14540	
Date Sampled	e Sampled		May 13, 2015	May 14, 2015	May 14, 2015	May 13, 2015	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM	-	-					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	39	< 20	< 20	
TRH C15-C28	50	mg/kg	270	160	170	< 50	
TRH C29-C36	50	mg/kg	320	240	160	< 50	
TRH C10-36 (Total)	50	mg/kg	590	440	330	< 50	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	80	80	80	77	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	480	360	280	< 100	
TRH >C34-C40	100	mg/kg	200	130	< 100	< 100	
Polycyclic Aromatic Hydrocarbons		_					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.8	1.7	3.7	1.4	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	2.0	1.9	4.0	1.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.3	2.2	4.3	1.9	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	0.9	< 0.5	
Benz(a)anthracene	0.5	mg/kg	1.6	1.1	< 0.5	1.1	
Benzo(a)pyrene	0.5	mg/kg	1.2	1.3	2.7	1.0	
Benzo(b&j)fluoranthene ^{N07}	Benzo(b&j)fluoranthene ^{N07} 0.5 m		1.5	0.9	3.7	0.7	
Benzo(g.h.i)perylene	0.5	mg/kg	1.3	0.8	2.6	0.9	
Benzo(k)fluoranthene	0.5	mg/kg	1.3	1.1	3.5	1.1	

Client Sample ID			QC1	HA5_0.3	HA7_0.3	HA8_0.2	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S15-My14535	S15-My14538	S15-My14539	S15-My14540	
Date Sampled			May 13, 2015	May 14, 2015	May 14, 2015	May 13, 2015	
Test/Reference	eference LOR Unit						
Polycyclic Aromatic Hydrocarbons							
Chrysene	0.5	mg/kg	1.4	1.0	3.3	1.1	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	2.9	1.8	6.8	2.0	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.1	0.7	2.3	0.8	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	0.8	0.5	2.8	0.6	
Pyrene	0.5	mg/kg	2.9	1.8	0.6	2.0	
Total PAH*	0.5	mg/kg	16	11	30	11	
2-Fluorobiphenyl (surr.)	1	%	117	105	114	113	
p-Terphenyl-d14 (surr.)	1	%	110	105	108	110	
Organochlorine Pesticides		70					
Chlordanes - Total	0.1	mg/kg	-	_	-	< 0.1	
4.4'-DDD	0.05	mg/kg	_	_	-	< 0.05	
4.4'-DDE	0.05	mg/kg	_	_	-	< 0.05	
4.4'-DDT	0.05	mg/kg	_	_	_	< 0.05	
a-BHC	0.05	mg/kg	_	_	_	< 0.05	
Aldrin	0.05	mg/kg	_	-		< 0.05	
b-BHC	0.05	mg/kg	_		-	< 0.05	
d-BHC	0.05	mg/kg	_	-	-	< 0.05	
Dieldrin	0.05	mg/kg	_		-	< 0.05	
Endosulfan I	0.05	mg/kg	_	-		< 0.05	
Endosulfan II	0.05	mg/kg	_	-		< 0.05	
Endosulfan sulphate	0.05	mg/kg	_		-	< 0.05	
Endrin	0.05	mg/kg	_		-	< 0.05	
Endrin aldehyde	0.05	mg/kg	_	-	-	< 0.05	
Endrin ketone	0.05	mg/kg	_	-		< 0.05	
g-BHC (Lindane)	0.05	mg/kg	_	-		< 0.05	
Heptachlor	0.05	mg/kg	_			< 0.05	
Heptachlor epoxide	0.05	mg/kg	_		_	< 0.05	
Hexachlorobenzene	0.05	mg/kg	_		-	< 0.05	
Methoxychlor	0.00	mg/kg				< 0.2	
Toxaphene	1	mg/kg	_		-	< 1	
Dibutylchlorendate (surr.)	1	%	_		-	95	
Tetrachloro-m-xylene (surr.)	1	%	_			91	
Polychlorinated Biphenyls (PCB)		/0	-	-	-	51	
Aroclor-1016	0.5	mg/kg	_		_	< 0.5	
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5	
Aroclor-1232	0.5	mg/kg				< 0.5	
Aroclor-1242 Aroclor-1248	0.5	mg/kg				< 0.5	
Aroclor-1254	0.5	mg/kg				< 0.5	
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5	
Total PCB*	0.1	mg/kg	-	-	-	< 0.5	
Dibutylchlorendate (surr.)	1	111g/kg %	-	-	-	95	
		/0	-	-	-		
% Moisture	0.1	%	11	6.1	10	9.1	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			QC1 Soil S15-My14535 May 13, 2015	HA5_0.3 Soil S15-My14538 May 14, 2015	HA7_0.3 Soil S15-My14539 May 14, 2015	HA8_0.2 Soil S15-My14540 May 13, 2015	
Test/Reference	LOR	Unit					
Heavy Metals							
Arsenic	2	mg/kg	4.6	24	8.8	2.9	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	1.0	< 0.4	
Chromium	5	mg/kg	25	40	17	19	
Copper	5	mg/kg	93	63	150	16	
Lead	5	mg/kg	410	120	650	97	
Mercury	0.05	mg/kg	0.35	0.09	0.77	0.22	
Nickel	5	mg/kg	13	21	9.9	12	
Zinc	5	mg/kg	470	150	530	65	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 18, 2015	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	May 18, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 18, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	May 18, 2015	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	May 18, 2015	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
Organochlorine Pesticides	Sydney	May 18, 2015	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	May 18, 2015	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
pH (1:5 Aqueous extract)	Sydney	May 18, 2015	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	May 19, 2015	7 Day
- Method: LM-LTM-INO-4010			
Ion Exchange Properties	Melbourne	May 19, 2015	
% Moisture	Sydney	May 15, 2015	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Name	Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067			Phone:								Received:May 15, 2015 4:49 PMDue:May 19, 2015Priority:2 DayContact Name:Daniel Guille			
Project ID:		COV25397AA													
											1			1	Eurofins mgt Client Manager: Charl Du Preez
		Sample Detail	I		Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity	
	ere analysis is c														
	oratory - NATA		4271											Х	
	tory - NATA Site				X	Х	Х	Х	Х	Х	Х	Х	Х	Х	<u>X</u>
	ratory - NATA S	ite # 20794													_
External Labor Sample ID	atory Sample Date	Sampling	Matrix	LAB ID											-
-	-	Time													
MW1_0.2	May 13, 2015		Soil	S15-My14516		X			<u> </u>		<u> </u>			<u> </u>	_
MW1_0.5	May 13, 2015		Soil	S15-My14517	X		Х	Х	Х	Х			Х	Х	X
MW1_1.0	May 13, 2015		Soil	S15-My14518		X			<u> </u>						_
MW1_2.0	May 13, 2015		Soil	S15-My14519	X				<u> </u>	Х			Х	<u> </u>	_
MW2_0.2	May 13, 2015		Soil	S15-My14520		X									_
MW2_0.5	May 13, 2015		Soil	S15-My14521	X			Х	Х	Х			Х		_
MW2_1.0	May 13, 2015		Soil	S15-My14522	X					Х			Х		_
MW2_2.0	May 13, 2015		Soil	S15-My14523	 	Х									_
MW3_0.2	May 13, 2015		Soil	S15-My14524		Х									

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Name Project ID:	ess: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067 SURRY HILLS VILLAGE				R	order Repor hone ax:	t #:		+61		06 10 06 10			Received:May 15, 2015 4:49 PMDue:May 19, 2015Priority:2 DayContact Name:Daniel Guille	
														Eurofins mgt Client Manager: Charl Du Preez	
	Sam	ple Detail		Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity	Cation Exchange Capacity	
	ere analysis is conduc														
	ooratory - NATA Site #												Х		
	atory - NATA Site # 182			X	X	Х	Х	Х	Х	Х	Х	Х	Х	X	
	ratory - NATA Site # 2	0794													
External Labor MW3_0.5	May 13, 2015	Soil	S15-My14525	X			X	X	Х			Х			
MW3_1.0	May 13, 2015	Soil	S15-My14526	X					X			X		—	
MW4_0.2	May 13, 2015	Soil	S15-My14527		Х										
MW4_0.5	May 13, 2015	Soil	S15-My14528	X			Х	Х	Х			Х			
MW4_1.0	May 13, 2015	Soil	S15-My14529	X					Х			Х			
 MW4_2.0	May 13, 2015	Soil	S15-My14530		Х										
HA5_0.1	May 13, 2015	Soil	S15-My14531	Х			Х	Х	Х			Х			
HA6_0.2	May 13, 2015	Soil	S15-My14532	Х			Х	Х	Х			Х			
HA6_0.5	May 13, 2015	Soil	S15-My14533	Х					Х			Х			
HA7_0.1	May 13, 2015	Soil	S15-My14534	Х					Х			Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company N Address: Project Nam Project ID:	Le C N ne: S					R	Order Repor Phone Fax:	t #:		+61		06 10 06 10			Received:May 15, 2015 4:49 FDue:May 19, 2015Priority:2 DayContact Name:Daniel GuilleEurofins mgt Client Manager: Char	
		Sam	ple Detail		Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity		
Laboratory w	here analys	sis is conduc	cted													
Melbourne La														Х		
Sydney Labor					X	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Brisbane Lab		ATA Site # 2	0794												_	
External Labo		0045														
QC1	May 13, 2	i	Soil	S15-My14535						X			Х			
RIN BLANK	May 13, 2	i	Water	S15-My14536				<u> </u>	<u> </u>		Х			$\left \right $		
TRIP BLANK	May 13, 2		Water	S15-My14537								Х			_	
HA5_0.3	May 14, 2	i	Soil	S15-My14538	X					X			Х		_	
HA7_0.3	May 14, 2	i	Soil	S15-My14539	X					X			X			
HA8_0.2	May 13, 2	2015	Soil	S15-My14540	Х			Х	Х	Х			Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

-	_		^

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		<u> </u>			1	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	mg/ng	100	<u> </u>	100	1 455	
Polycyclic Aromatic Hydrocarbons				1		
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene		< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5		
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg				Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1		1	1	
Organochlorine Pesticides					_	
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	ļ
b-BHC	mg/kg	< 0.05		0.05	Pass	ļ
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	

Endosulfan sulphateEndrinEndrinEndrin aldehydeEndrin ketoneg-BHC (Lindane)HeptachlorHeptachlor epoxideHexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1232Aroclor-1248Aroclor-1254Aroclor-1254Aroclor-1260Method Blank	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 1	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
EndrinEndrin aldehydeEndrin ketoneg-BHC (Lindane)HeptachlorHeptachlor epoxideHexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1248Aroclor-1254Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 1	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.2 1 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass Pass	
Endrin aldehydeEndrin ketoneg-BHC (Lindane)HeptachlorHeptachlor epoxideHexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 1	0.05 0.05 0.05 0.05 0.05 0.05 0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass Pass	
Endrin ketoneg-BHC (Lindane)HeptachlorHeptachlor epoxideHexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1248Aroclor-1254Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 1	0.05 0.05 0.05 0.05 0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass Pass	
g-BHC (Lindane)HeptachlorHeptachlor epoxideHexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.2 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.05 0.05 0.05 0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass Pass	
HeptachlorHeptachlor epoxideHexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.2 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.05 0.05 0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass Pass	
Heptachlor epoxideHexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.2 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.05 0.05 0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass Pass	
HexachlorobenzeneMethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.2 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.05 0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass Pass	
MethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.2 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass Pass	
MethoxychlorToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.2 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.2 1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass Pass	
ToxapheneMethod BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 0.5 0.5 0.5 0.5 0.5 0.5	Pass Pass Pass Pass Pass	
Method BlankPolychlorinated Biphenyls (PCB)Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.5 0.5 0.5 0.5	Pass Pass Pass Pass	
Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.5 0.5 0.5 0.5	Pass Pass Pass Pass	
Aroclor-1016Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1260Method BlankConductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.5 0.5 0.5 0.5	Pass Pass Pass Pass	
Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Method Blank Conductivity (1:5 aqueous extract at 25°C) Image: Conductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	0.5 0.5 0.5 0.5	Pass Pass Pass Pass	
Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Method Blank Conductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	0.5 0.5 0.5	Pass Pass Pass	
Aroclor-1248 Aroclor-1254 Aroclor-1260 Method Blank Conductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5	0.5 0.5	Pass Pass	
Aroclor-1254 Aroclor-1260 Method Blank Conductivity (1:5 aqueous extract at 25°C)	mg/kg mg/kg	< 0.5 < 0.5	0.5	Pass	
Aroclor-1260 Method Blank Conductivity (1:5 aqueous extract at 25°C)	mg/kg	< 0.5	1		
Method Blank Conductivity (1:5 aqueous extract at 25°C)			0.0	1 433	1
Conductivity (1:5 aqueous extract at 25°C)	uS/cm	< 10			
	u3/cm	< 10	10	Pass	
			10	F d 5 5	
Lleaves Matala			 T	1	
Heavy Metals		10		Dees	
	mg/kg	< 2	 2	Pass	
	mg/kg	< 0.4	 0.4	Pass	
	mg/kg	< 5	 5	Pass	
	mg/kg	< 5	5	Pass	
	mg/kg	< 5	 5	Pass	
	mg/kg	< 0.05	0.05	Pass	
	mg/kg	< 5	5	Pass	
	mg/kg	< 5	5	Pass	
LCS - % Recovery		г. г.		1	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions			 		
TRH C6-C9	%	106	 70-130	Pass	
TRH C10-C14	%	75	 70-130	Pass	
LCS - % Recovery			 1		
BTEX					
Benzene	%	99	 70-130	Pass	
Toluene	%	95	 70-130	Pass	
Ethylbenzene	%	95	 70-130	Pass	
m&p-Xylenes	%	99	70-130	Pass	
o-Xylene	%	99	70-130	Pass	
Xylenes - Total	%	99	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	93	70-130	Pass	
TRH C6-C10	%	97	70-130	Pass	
TRH >C10-C16	%	74	70-130	Pass	
LCS - % Recovery			 		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	85	 70-130	Pass	
Anthracene	%	86	 70-130	Pass	
Benz(a)anthracene	%	78	70-130	Pass	

Tes	t		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene			%	90	70-130	Pass	
Benzo(b&j)fluoranthene			%	120	70-130	Pass	
Benzo(g.h.i)perylene			%	87	70-130	Pass	
Benzo(k)fluoranthene			%	99	70-130	Pass	
Chrysene			%	94	70-130	Pass	
Dibenz(a.h)anthracene			%	89	70-130	Pass	
Fluoranthene			%	88	70-130	Pass	
Fluorene			%	86	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	91	70-130	Pass	
Naphthalene			%	97	70-130	Pass	
Phenanthrene			%	91	70-130	Pass	
Pyrene			%	89	70-130	Pass	
LCS - % Recovery					-		
Organochlorine Pesticides							
Chlordanes - Total			%	98	70-130	Pass	
4.4'-DDD			%	96	70-130	Pass	
4.4'-DDE			%	97	70-130	Pass	
4.4'-DDT			%	96	70-130	Pass	
a-BHC			%	90	70-130	Pass	
Aldrin			%	101	70-130	Pass	
b-BHC			%	98	70-130	Pass	
d-BHC			%	89	70-130	Pass	
Dieldrin			%	101	70-130	Pass	
Endosulfan I			%	94	70-130	Pass	
Endosulfan II			%	98	70-130	Pass	
Endosulfan sulphate			%	100	70-130	Pass	
Endrin			%	100	70-130	Pass	
Endrin aldehyde			%	95	70-130	Pass	
Endrin ketone			%	99	70-130	Pass	
g-BHC (Lindane)			%	94	70-130	Pass	
Heptachlor			%	102	70-130	Pass	
Heptachlor epoxide			%	102	70-130	Pass	
Methoxychlor			%	97	70-130	Pass	
^			70	97	70-130	F d 55	
LCS - % Recovery Polychlorinated Biphenyls (PCE	2)			1			
)		%	105	70.120	Deee	
Aroclor-1260			70	105	70-130	Pass	
LCS - % Recovery				1	1		
Heavy Metals			0/	05	70.400	Deee	
Arsenic			%	95	70-130	Pass	
Cadmium			%	116	70-130	Pass	
Chromium			%	95	70-130	Pass	
Copper			%	95	70-130	Pass	
Lead			%	118	70-130	Pass	
Mercury			%	101	70-130	Pass	
Nickel			%	93	70-130	Pass	
Zinc			%	96	70-130	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Heavy Metals		1		Result 1	_		
Arsenic	S15-My14604	NCP	%	97	70-130	Pass	
Chromium	S15-My14604	NCP	%	91	70-130	Pass	
Copper	S15-My14604	NCP	%	77	70-130	Pass	
Nickel	S15-My14604	NCP	%	85	70-130	Pass	
Zinc	S15-My11923	NCP	%	80	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarb	ons			Result 1				
Acenaphthene	S15-My09734	NCP	%	108		70-130	Pass	
Acenaphthylene	S15-My09734	NCP	%	106		70-130	Pass	
Anthracene	S15-My09734	NCP	%	112		70-130	Pass	
Benz(a)anthracene	S15-My09734	NCP	%	107		70-130	Pass	
Benzo(a)pyrene	S15-My09734	NCP	%	109		70-130	Pass	
Benzo(b&j)fluoranthene	S15-My09734	NCP	%	103		70-130	Pass	
Benzo(g.h.i)perylene	S15-My09734	NCP	%	96		70-130	Pass	
Benzo(k)fluoranthene	S15-My09734	NCP	%	109		70-130	Pass	
Chrysene	S15-My09734	NCP	%	106		70-130	Pass	
Dibenz(a.h)anthracene	S15-My09734	NCP	%	97		70-130	Pass	
Fluoranthene	S15-My09734	NCP	%	110		70-130	Pass	
Fluorene	S15-My09734	NCP	%	108		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S15-My09734	NCP	%	97		70-130	Pass	
Naphthalene	S15-My09734	NCP	%	108		70-130	Pass	
Phenanthrene	S15-My09734	NCP	%	100		70-130	Pass	
Pyrene	S15-My09734	NCP	%	110		70-130	Pass	
Spike - % Recovery	010 My00704		70			10100	1 433	
Organochlorine Pesticides				Result 1		1		
Chlordanes - Total	S15-My14521	CP	%	127		70-130	Pass	
4.4'-DDD	S15-My14521	CP	%	127		70-130	Pass	
4.4'-DDE		CP	%	123		70-130		
	S15-My14521	CP CP	%				Pass	
4.4'-DDT	S15-My14521	-		112		70-130	Pass	
a-BHC	S15-My14521	CP	%	119		70-130	Pass	
Aldrin	S15-My14521	CP	%	128		70-130	Pass	
b-BHC	S15-My14521	CP	%	121		70-130	Pass	
d-BHC	S15-My14521	CP	%	119		70-130	Pass	
Dieldrin	S15-My14521	CP	%	130		70-130	Pass	
Endosulfan I	S15-My14521	CP	%	113		70-130	Pass	
Endosulfan II	S15-My14521	CP	%	123		70-130	Pass	
Endosulfan sulphate	S15-My14521	CP	%	127		70-130	Pass	
Endrin	S15-My14521	CP	%	127		70-130	Pass	
Endrin aldehyde	S15-My14521	CP	%	112		70-130	Pass	
Endrin ketone	S15-My14521	CP	%	124		70-130	Pass	
g-BHC (Lindane)	S15-My14521	CP	%	120		70-130	Pass	
Heptachlor	S15-My14521	CP	%	128		70-130	Pass	
Heptachlor epoxide	S15-My14521	CP	%	124		70-130	Pass	
Methoxychlor	S15-My14521	CP	%	118		70-130	Pass	
Spike - % Recovery				1	r	1		
Polychlorinated Biphenyls (PCI	3)			Result 1				
Aroclor-1260	S15-My14521	CP	%	107		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbor		ions		Result 1				
TRH C6-C9	S15-My14531	CP	%	100		70-130	Pass	
TRH C10-C14	S15-My14531	CP	%	89		70-130	Pass	
Spike - % Recovery				1		i	-	
BTEX				Result 1				
Benzene	S15-My14531	CP	%	90		70-130	Pass	
Toluene	S15-My14531	CP	%	91		70-130	Pass	
Ethylbenzene	S15-My14531	CP	%	91		70-130	Pass	
m&p-Xylenes	S15-My14531	CP	%	95		70-130	Pass	
o-Xylene	S15-My14531	CP	%	94		70-130	Pass	
Xylenes - Total	S15-My14531	СР	%	95		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	,								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1					
Naphthalene	S15-My14531	CP	%	90			70-130	Pass	
TRH C6-C10	S15-My14531	CP	%	97			70-130	Pass	
TRH >C10-C16	S15-My14531	CP	%	93			70-130	Pass	
Spike - % Recovery	, ,								
Heavy Metals				Result 1					
Cadmium	S15-My14531	CP	%	117			70-130	Pass	
Lead	S15-My14531	CP	%	129			70-130	Pass	
Mercury	S15-My14531	CP	%	128			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S15-My14517	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S15-My14517	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S15-My14517	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S15-My14517	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate						•		1 0.00	
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S15-My14517	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S15-My14517	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S15-My14517	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S15-My14517	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S15-My14517	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S15-My14517	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate		01	mg/ng	0.0	0.0		0070	1 400	
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C)	S15-My14517	СР	uS/cm	63	57	10	30%	Pass	
pH (1:5 Aqueous extract)	S15-My12428	NCP	pH Units	6.7	6.8	pass	30%	Pass	
Duplicate						- 200			
Polycyclic Aromatic Hydrocarbons	6			Result 1	Result 2	RPD			
Acenaphthene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbo	2005			Result 1	Result 2	RPD	1	1	
Benzo(b&j)fluoranthene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S15-My09501	NCP		< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.n.i)perylene Benzo(k)fluoranthene	,	NCP	mg/kg		1 1	<1	1		
	S15-My09501		mg/kg	< 0.5	< 0.5		30%	Pass	
Chrysene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S15-My09501	NCP	mg/kg	< 0.5	0.60	44	30%	Fail	Q15
Phenanthrene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S15-My09501	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1	i		1		
Total Recoverable Hydrocarbon			1	Result 1	Result 2	RPD			
TRH C6-C9	S15-My14529	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S15-My14529	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S15-My14529	CP	mg/kg	150	93	47	30%	Fail	Q15
TRH C29-C36	S15-My14529	CP	mg/kg	65	< 50	37	30%	Fail	Q15
Duplicate				1	<u>i</u>		i		
BTEX	1			Result 1	Result 2	RPD			
Benzene	S15-My14529	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S15-My14529	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S15-My14529	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S15-My14529	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S15-My14529	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S15-My14529	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S15-My14529	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S15-My14529	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S15-My14529	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S15-My14529	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S15-My14529	CP	mg/kg	190	120	44	30%	Fail	Q15
TRH >C34-C40	S15-My14529	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	1 2 2 2, 2								
				Result 1	Result 2	RPD			
% Moisture	S15-My14529	CP	%	13	13	<1	30%	Pass	
Duplicate		01	/0				0070	1 000	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S15-My14529	CP	mg/kg	5.2	5.9	12	30%	Pass	
Cadmium	S15-My14529	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S15-My14529	CP	mg/kg	13	11	20	30%	Pass	
	S15-My14529	CP		13	11	7.0	30%	Pass	
Copper		CP	mg/kg	1			1		
Lead	S15-My14529	1	mg/kg	100	100	4.0	30%	Pass	
Mercury	S15-My14529	CP	mg/kg	0.23	0.24	1.0	30%	Pass	
Nickel	S15-My14529	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S15-My14529	CP	mg/kg	120	150	23	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Charl Du Preez	Analytical Services Manager
Bob Symons	Senior Analyst-Inorganic (NSW)
Emily Rosenberg	Senior Analyst-Metal (VIC)
Huong Le	Senior Analyst-Inorganic (VIC)
Ivan Taylor	Senior Analyst-Metal (NSW)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

1. Jul

Glenn Jackson National Laboratory Manager Pinel report - this Report segments any providently inserted Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofine; Ing shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine; Ing the liable for consequential damages including, but not initing by the information or interpretation given in this report. In no case shall Eurofine; Ing the liable for consequential damages including, but not

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:	Daniel Guille	
Report	457842-AID	
Project Name	SURRY HILLS VILLAGE	
Project ID	GEOTLCOV25397AA	
Received Date	May 15, 2015	
Date Reported	May 19, 2015	

Methodology:

Asbestos ID

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.

Subsampling Soil Samples The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.

Bonded The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding $400 \pm 30^{\circ}$ C. The resultant material is then ground and examined in accordance with AS 4964-2004.

Limit of Reporting The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins | mgt NATA accreditation as designated by an asterisk.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name
Project ID
Date Sampled
Report

SURRY HILLS VILLAGE GEOTLCOV25397AA May 13, 2015 to May 14, 2015 457842-AID

mgt

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
MW1_0.5	15-My14517	May 13, 2015	Approximate Sample 101g Sample consisted of: Greyish brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW1_2.0	15-My14519	May 13, 2015	Approximate Sample 198g Sample consisted of: Dark brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW2_0.5	15-My14521	May 13, 2015	Approximate Sample 204g Sample consisted of: Beige-pink coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW2_1.0	15-My14522	May 13, 2015	Approximate Sample 204g Sample consisted of: Greyish brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW3_0.5	15-My14525	May 13, 2015	Approximate Sample 141g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW3_1.0	15-My14526	May 13, 2015	Approximate Sample 118g Sample consisted of: Beige-pink coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW4_0.5	15-My14528	May 13, 2015	Approximate Sample 123g Sample consisted of: Greyish brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
MW4_1.0	15-My14529	May 13, 2015	Approximate Sample 105g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
HA5_0.1	15-My14531	May 13, 2015	Approximate Sample 151g Sample consisted of: Dark brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
HA6_0.2	15-My14532	May 13, 2015	Approximate Sample 141g Sample consisted of: Brown coarse-grained soil and rocks	Chrysotile, amosite and crocidolite asbestos detected in weathered fibre cement fragments and in the form of loose fibre bundles. Approximate raw weight of asbestos containing material = 0.2885g Organic fibre detected. No respirable fibres detected.
HA6_0.5	15-My14533	May 13, 2015	Approximate Sample 141g Sample consisted of: Brown coarse-grained soil and rocks	Chrysotile, amosite and crocidolite asbestos detected in weathered fibre cement fragments and in the form of loose fibre bundles. Approximate raw weight of asbestos containing material = 0.1020g Organic fibre detected. No respirable fibres detected.
HA7_0.1	15-My14534	May 13, 2015	Approximate Sample 166g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
HA5_0.3	15-My14538	May 14, 2015	Approximate Sample 98g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
HA7_0.3	15-My14539	May 14, 2015	Approximate Sample 215g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
HA8_0.2	15-My14540	May 13, 2015	Approximate Sample 198g Sample consisted of: Greyish brown coarse-grained soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Sample History

mgt

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos – LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyMay 18, 2015Indefinite

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Company Na Address:		ific Highway	Phone: +					+61		06 1			Received:May 15, 2015 4:49 PMDue:May 19, 2015Priority:2 DayContact Name:Daniel Guille		
Project Name Project ID:		HILLS VILLAGE COV25397AA													
															Eurofins mgt Client Manager: Charl Du Preez
		Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity				
	ere analysis is c				_			└── ′							
	oratory - NATA		271		V	V	V		V	V	V	V	V	X	
	atory - NATA Site pratory - NATA Si				X	X	Х	Х	Х	X	Х	X	X	Х	
External Labor		10 # 20134						┝──┦							
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
MW1_0.2	May 13, 2015		Soil	S15-My14516		Х									
MW1_0.5	May 13, 2015		Soil	S15-My14517	Х		Х	Х	Х	Х			Х	Х	
MW1_1.0	May 13, 2015		Soil	S15-My14518		Х									
MW1_2.0	May 13, 2015		Soil	S15-My14519	Х			<u> </u>		Х			Х		
MW2_0.2	May 13, 2015		Soil	S15-My14520	<u> </u>	Х		<u> </u>						<u> </u>	
MW2_0.5	May 13, 2015		Soil	S15-My14521	Х			Х	Х	Х			Х	 	
MW2_1.0	May 13, 2015		Soil	S15-My14522	Х			<u> </u>		Х			Х	<u> </u>	
MW2_2.0	May 13, 2015		Soil	S15-My14523		Х		└── ′						 	
MW3_0.2	May 13, 2015		Soil	S15-My14524		Х									

mgt

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Company Na Address:	d Pacific Highway		R	order Repor hone ax:	t #:			2 94	.06 10 .06 10			Received: Due: Priority: Contact N		May 15, 2015 4:49 PM May 19, 2015 2 Day Daniel Guille			
Project Name Project ID:		RY HILLS VILLAG TLCOV25397AA	Ξ														
•														Eurofi	ins mgt	Client Manager: Charl Du Preez	
	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity							
Laboratory who	ere analysis i	s conducted															
Melbourne Lab	ooratory - NAT	TA Site # 1254 & 1	4271											Х			
Sydney Labora	atory - NATA S	Site # 18217			X	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Brisbane Labo		Site # 20794															
External Labor	1																
MW3_0.5	May 13, 2015	i	Soil	S15-My14525	X			Х	Х	Х			Х				
MW3_1.0	May 13, 2015	i	Soil	S15-My14526	X	-				Х			Х				
MW4_0.2	May 13, 2015	i	Soil	S15-My14527	_	X											
MW4_0.5	May 13, 2015	i	Soil	S15-My14528	X			Х	Х	Х			Х				
MW4_1.0	May 13, 2015		Soil	S15-My14529	X					Х			Х				
MW4_2.0	May 13, 2015		Soil	S15-My14530		X											
HA5_0.1	May 13, 2015		Soil	S15-My14531	X			Х	Х	Х			Х				
HA6_0.2	May 13, 2015		Soil	S15-My14532	X			Х	Х	Х			Х				
HA6_0.5	May 13, 2015		Soil	S15-My14533	X					Х			Х				
HA7_0.1	May 13, 2015	5	Soil	S15-My14534	Х					Х			Х				

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Company Na Address:	Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067										842 2 94 2 94				Due: May Priority: 2 D	y 15, 2015 4:49 PM y 19, 2015 ay niel Guille
Project Name Project ID:		Y HILLS VILLAGE COV25397AA														
															Eurofins mgt Client	t Manager: Charl Du Preez
		Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides	Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity					
	ere analysis is															
		Site # 1254 & 14	271											Х		
	atory - NATA Sit				X	X	Х	Х	Х	Х	Х	Х	Х	Х		
	oratory - NATA S	Site # 20794														
External Labor	1	1	<u> </u>													
	May 13, 2015		Soil	S15-My14535						Х			Х			
	May 13, 2015		Water	S15-My14536							Х	V				
	May 13, 2015		Water	S15-My14537						V		Х	v	$\left - \right $		
HA5_0.3	May 14, 2015		Soil	S15-My14538	X					X			X			
HA7_0.3	May 14, 2015		Soil	S15-My14539	X					X			X	$\left - \right $		
HA8_0.2	May 13, 2015		Soil	S15-My14540	Х			Х	Х	Х			Х			

Eurofins | mgt Internal Quality Control Review and Glossary General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

UNITS

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

% w/w: weight for weight b	basis grams	per kilogram
Filter loading:	fibres/	100 graticule areas
Reported Concentration:	fibres/r	mL
Flowrate:	L/min	
TERMS		
Dry	Where a moisture has been determined on a solid sample the result is expre	essed on a dry basis.
LOR	Limit of Reporting.	
сос	Chain of custody	
SRA	Sample Receipt Advice	
ISO	International Stardards Organisation	
AS	Australian Standards	
WA DOH	Western Australia Department of Health	
NOHSC	National Occupational Health and Safety Commission	
ACM	although possibly broken or fragmented, and where the asbestos is bound i to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustica ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to n	han 1% asbestos and comprises asbestos-containing-material which is in sound condition, n a matrix such as cement or resin. Common examples of ACM include but are not limited al plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and naterial that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it ragments to be smaller than this would imply a high degree of damage and hence potential
FA		ment sheet, insulation products and woven asbestos material. This type of friable asbestos at it can be broken or crumbled by hand pressure. This material is typically unbonded or
PACM	с ,	and surfacing material found in buildings, vessels, and vessel sections constructed no later ut have not been sampled or analyzed to verify or negate the presence of asbestos.
AF	small fibres (< 5 microns in length) are not considered to be such a risk. AF	17mm. It is the free fibres which present the greatest risk to human health, although very also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. e implies a substatutial degree of damage which increases the potential for fibre release.)
AC	Asbestos cement means a mixture of cement and asbestos fibres (typically	90:10 ratios).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Authorised by:

Nibha Vaidya

Senior Analyst-Asbestos (NSW)

Glenn Jackson National Laboratory Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | right shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | right liable for cost, observations of the reported execution of the reported execution of the report. In or case shall Eurofins, the respective execution of the reported execution of the report

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Nai Address: Project Name	Level 18 Chatswo NSW 20	cific Highway	Order No.:Report #:457842Phone:+61 2 9406 1000Fax:+61 2 9406 1002										Received:May 15, 2015 4:49 PMDue:May 19, 2015Priority:2 DayContact Name:Daniel Guille		
Project ID:		COV25397AA													
															Eurofins mgt Client Manager: Charl Du Preez
	Sample Detail								Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity	Cation Exchange Capacity
Laboratory whe															
		Site # 1254 & 14	271											X	
Sydney Labora					X	X	X	X	Х	Х	Х	Х	Х	Х	X
Brisbane Labor External Labor		ite # 20/94			-										_
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
MW1_0.2	May 13, 2015		Soil	S15-My14516		Х									
	May 13, 2015		Soil	S15-My14517	Х		Х	Х	Х	Х			Х	Х	x
MW1_1.0	May 13, 2015		Soil	S15-My14518		Х									
	May 13, 2015		Soil	S15-My14519	Х					Х			Х		
	May 13, 2015		Soil	S15-My14520		Х									
	May 13, 2015		Soil	S15-My14521	X			Х	Х	Х			Х		
	May 13, 2015		Soil	S15-My14522	X					Х			Х		
	May 13, 2015		Soil	S15-My14523	-	Х									
MW3_0.2	May 13, 2015		Soil	S15-My14524		Х									

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Nam Project ID:	Leve Chat NSW	acific Highway		R	Order Repor Phone Fax:	t #:		+61	842 2 94 2 94				Received:May 15, 2015 4:49 PMDue:May 19, 2015Priority:2 DayContact Name:Daniel Guille		
					Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract)	Organochlorine Pesticides		_		_	_		Eurofins mgt Client Manager: Charl Du Preez
	Sample Detail								Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity	
		s conducted	1071		-									х	×
Sydney Labor			+271		X	x	X	X	Х	х	X	х	х	X	
Brisbane Labo									~	~				~	
External Labo															
MW3_0.5	May 13, 201	5	Soil	S15-My14525	Х			Х	Х	Х			Х		
MW3_1.0	May 13, 201		Soil	S15-My14526	X					Х			Х		
MW4_0.2	May 13, 201	- i	Soil	S15-My14527	 	Х									
MW4_0.5	May 13, 201	- i	Soil	S15-My14528	X		<u> </u>	Х	Х	Х			Х		
MW4_1.0	May 13, 201	i	Soil	S15-My14529	X					Х			Х		_
MW4_2.0	May 13, 201	i	Soil	S15-My14530		X									_
HA5_0.1	May 13, 201		Soil	S15-My14531	Х	<u> </u>		Х	Х	Х			Х		_
HA6_0.2	May 13, 201		Soil	S15-My14532	X		<u> </u>	X	Х	X			X		_
HA6_0.5	May 13, 201		Soil	S15-My14533	X				$\left - \right $	X			X		_
HA7_0.1	May 13, 201	5	Soil	S15-My14534	Х					Х			Х		

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Name Project ID:	Leve Chat NSV	ific Highway	Order No.:Report #:457842Phone:+61 2 9406 1000Fax:+61 2 9406 1002										ty: act Name:	M 2 Da	ay 15, 2015 ay 19, 2015 Day aniel Guille nt Manager:	Preez			
	Sample Detail								Polychlorinated Biphenyls (PCB)	Eurofins mgt Suite 7	Eurofins mgt Suite 1	BTEX and Volatile TRH	Moisture Set	Cation Exchange Capacity					
Laboratory who															-				
		TA Site # 1254 & 14	1271											Х	-				
Sydney Labora					X	Х	Х	Х	Х	Х	Х	Х	Х	Х	-				
Brisbane Labo		A Site # 20794													-				
External Labor	1		0	045 14:44505									V		-				
	May 13, 201	i	Soil	S15-My14535						Х	~		Х		-				
	May 13, 201	i	Water	S15-My14536							Х	V			-				
TRIP BLANK	May 13, 201	1	Water	S15-My14537						х		Х	Х		-				
HA5_0.3	May 14, 201		Soil Soil	S15-My14538	X								X		-				
HA7_0.3 HA8_0.2	May 14, 201 May 13, 201		Soil	S15-My14539 S15-My14540	X X			Х	Х	X X			X]				

ABN - 50 005 085 521 e.mail : Envi

e.mail : EnviroSales@eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Coffey Geotechnics Pty Ltd Chatswood Company name: Contact name: Daniel Guille Project name: SURRY HILLS VILLAGE Project ID: GEOTLCOV25397AA COC number: 0351-52 Turn around time: 2 Day May 15, 2015 4:49 PM Date/Time received: Eurofins | mgt reference: 457842

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 7.6 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample ID discrepancy: COC: MW4_2.0 JAR: MW5_2.0; COC: HA8_0.2 JAR: HA8_0.2 sample IDs as per COC

Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone : or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to Daniel Guille - daniel.guille@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Geotechnics Pty Ltd Chatswood email address.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

Certificate of Analysis

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Daniel Guille

mgt

Report	459031-L
Project name	ADDITIONAL: SURRY HILLS VILLAGE
Project ID	GEOTLCOV25397AA
Received Date	May 26, 2015

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			MW1_0.5 TCLP S15-My22817 May 13, 2015	MW1_2.0 TCLP S15-My22818 May 13, 2015	MW2_1.0 TCLP S15-My22819 May 13, 2015	MW4_0.5 TCLP S15-My22820 May 13, 2015
Test/Reference	LOR	Unit				
Benzo[a]pyrene						
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
p-Terphenyl-d14 (surr.)	1	%	70	73	71	51
2-Fluorobiphenyl (surr.)	1	%	111	103	107	70
Heavy Metals						
Lead	0.01	mg/L	1.0	0.11	-	0.08
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	8.4	8.9	8.9	8.9
pH (off)	0.1	pH Units	5.5	6.0	5.5	6.2
pH (USA HCI addition)	0.1	pH Units	2.2	2.2	2.1	2.2

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	MW4_1.0 TCLP S15-My22821 May 13, 2015	HA5_0.1 TCLP S15-My22822 May 13, 2015	HA6_0.5 TCLP S15-My22823 May 13, 2015	HA7_0.1 TCLP S15-My22824 May 13, 2015
Benzo[a]pyrene						
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
p-Terphenyl-d14 (surr.)	1	%	62	-	58	50
2-Fluorobiphenyl (surr.)	1	%	98	-	90	75
Heavy Metals						
Lead	0.01	mg/L	-	0.02	0.05	0.14
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	9.3	7.9	7.5	7.2
pH (off)	0.1	pH Units	6.5	5.4	5.1	5.1
pH (USA HCI addition)	0.1	pH Units	2.2	2.2	2.1	2.1

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			HA8_0.2 TCLP S15-My22825 May 13, 2015	HA5_0.3 TCLP S15-My22826 May 14, 2015	HA7_0.3 TCLP S15-My22827 May 14, 2015
Test/Reference	LOR	Unit			
Benzo[a]pyrene					
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
p-Terphenyl-d14 (surr.)	1	%	70	50	72
2-Fluorobiphenyl (surr.)	1	%	105	71	109
Heavy Metals					
Lead	0.01	mg/L	-	0.06	0.18
USA Leaching Procedure					
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0
pH (initial)	0.1	pH Units	9.3	8.2	8.4
pH (off)	0.1	pH Units	5.3	5.1	5.8
pH (USA HCI addition)	0.1	pH Units	2.1	2.2	2.3

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

mgt

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Benzo[a]pyrene	Sydney	May 28, 2015	7 Day
- Method: E007 Benzo[a]pyrene			
Heavy Metals	Sydney	May 28, 2015	180 Day
- Method: E022 Acid Extractable metals in Soils			
USA Leaching Procedure	Sydney	May 28, 2015	14 Day
- Method: E019 TCLP Preparation			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Nar Address: Project Name Project ID:	Level 18 Chatswo NSW 206 : ADDITIC		el Tower 799 Pa	cific Highway		R	Order Repor hone ax:	459031 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	May 26, 2015 2:05 PM May 28, 2015 2 Day Daniel Guille
						C	ω		Eurofins mgt	t Client Manager: Charl Du Preez
		Sample Detail			Lead	USA Leaching Procedure	Benzo[a]pyrene			
_aboratory whe	ere analysis is co	onducted								
Melbourne Lab	oratory - NATA S	Site # 1254 & 14	271							
	tory - NATA Site				X	Х	Х			
Brisbane Labor	atory - NATA Si	te # 20794								
External Labora			T	_						
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
/W1_0.5	May 13, 2015		TCLP	S15-My22817	Х	Х	Х			
/W1_2.0	May 13, 2015		TCLP	S15-My22818	Х	Х	Х			
1W2_1.0	May 13, 2015		TCLP	S15-My22819		Х	Х			
/W4_0.5	May 13, 2015		TCLP	S15-My22820	Х	Х	Х			
1W4_1.0	May 13, 2015		TCLP	S15-My22821		Х	Х			
IA5_0.1	May 13, 2015		TCLP	S15-My22822	Х	Х				
IA6_0.5	May 13, 2015		TCLP	S15-My22823	X	X	Х			
HA7_0.1	May 13, 2015		TCLP	S15-My22824	Х	Х	Х			
HA8_0.2	May 13, 2015		TCLP	S15-My22825		X	X			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Name: Address: Project Name:	ddress: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067				R	order I Report hone: ax:	459031 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	May 26, 2015 2:05 PM May 28, 2015 2 Day Daniel Guille
Project ID:	GEOTLCOV2	5397AA						Eurofins mgf	Client Manager: Charl Du Preez
	Sam	ple Detail		Lead	USA Leaching Procedure	Benzo[a]pyrene			
	analysis is conduc			_					
	tory - NATA Site #								
Sydney Laborator	/ - NATA Site # 182	217		Х	Х	Х			
Brisbane Laborato	ry - NATA Site # 2	0794							
External Laborato	У								
HA5_0.3 Ma	y 14, 2015	TCLP	S15-My22826	Х	Х	Х			
	i	TCLP	S15-My22827	X	Х	Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

-	-		^

I ERING	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Method Blank				-				_	
Benzo[a]pyrene									
Benzo(a)pyrene			mg/L	< 0.001			0.001	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	S15-My22818	CP	%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S15-My22817	CP	mg/L	1.0	1.2	16	30%	Pass	
Duplicate									
Benzo[a]pyrene				Result 1	Result 2	RPD			
Benzo(a)pyrene	S15-My22818	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

 Code
 Description

 C01
 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Charl Du Preez Ivan Taylor Ryan Hamilton Analytical Services Manager Senior Analyst-Metal (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson National Laboratory Manager Pinel report - Mie Report sopheres any previously insered Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofine; Ing shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine; Ing be liable for consequential damages including, but not initing to liable for client, cost and production arising for this report. This document shall not be reproduced except in full and relates only to the times teted. Unless, the test's were, the test's were performed on the samples as received.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Na Address: Project Name	Level Chats NSW	y Geotechnics Pty 18, Tower B, Citac swood 2067 TIONAL: SURRY F	del Tower 799 Pa	acific Highway		R P	order epor hone ax:	Received: Due: Priority: Contact Name:	May 26, 2015 2:05 PM May 28, 2015 2 Day Daniel Guille
Project ID:		TLCOV25397AA	TILLS VILLAGE						
								Eurofins mgt	Client Manager: Charl Du Preez
		Sample Detai	I		Lead	USA Leaching Procedure	Benzo[a]pyrene		
Laboratory wh									
		A Site # 1254 & 1	4271						
Sydney Labora					X	X	Х		
Brisbane Labo		Site # 20794							
External Labor	1								
Sample ID	Sample Da	te Sampling Time	Matrix	LAB ID					
MW1_0.5	May 13, 201	5	TCLP	S15-My22817	Х	Х	Х		
MW1_2.0	May 13, 201		TCLP	S15-My22818	Х	Х	Х		
MW2_1.0	May 13, 201	1	TCLP	S15-My22819		Х	Х		
MW4_0.5	May 13, 201	1	TCLP	S15-My22820	Х	Х	Х		
MW4_1.0	May 13, 201		TCLP	S15-My22821		Х	Х		
HA5_0.1	May 13, 201	5	TCLP	S15-My22822	Х	Х			
HA6_0.5	May 13, 201	5	TCLP	S15-My22823	Х	Х	Х		
HA7_0.1	May 13, 201		TCLP	S15-My22824	Х	Х	Х		
HA8_0.2	May 13, 201	5	TCLP	S15-My22825		Х	Х		

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Name Address:	Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067				R P	order f Report Phone: ax:	459031 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	May 26, 2015 2:05 PM May 28, 2015 2 Day Daniel Guille
Project Name: Project ID:	ADDITIONAL: SU GEOTLCOV2539	JRRY HILLS VILLAGE 97AA						Eurofins mg	Client Manager: Charl Du Preez
	Sample	e Detail		Lead	USA Leaching Procedure	Benzo[a]pyrene			
	analysis is conducte								
	tory - NATA Site # 12								
Sydney Laborato	y - NATA Site # 18217	7		Х	Х	Х			
Brisbane Laborat	ory - NATA Site # 2079	94							
External Laborato	ry								
HA5_0.3 M	ay 14, 2015	TCLP	15-My22826	Х	Х	Х			
	ay 14, 2015	TCLP	15-My22827	Х	Х	Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

es@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Coffey Geotechnics Pty Ltd Chatswood
Contact name: Project name:	Daniel Guille ADDITIONAL: SURRY HILLS VILLAGE
Project ID:	GEOTLCOV25397AA
COC number:	Not provided
Turn around time:	2 Day
Date/Time received:	May 26, 2015 2:05 PM
Eurofins mgt reference:	459031

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 7.6 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Additional from 457842

Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone : or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to Daniel Guille - daniel.guille@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Geotechnics Pty Ltd Chatswood email address.

Environmental Laboratory NATA Air Analysis Stack Water Analysis Trade Soil Contamination Analysis Grou

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

Enquiries Syd		
Subject:	FW: Batch 457842 - GEOTLCOV2 analyses	5397AA SURRY HILSS VILLAGE - additional
Importance:	High	URGENT

From: Daniel Guille [<u>mailto:Daniel.Guille@coffey.com</u>] *Sent:* Tuesday, 26 May 2015 2:05 PM *To:* Charl DuPreez *Subject:* Batch 457842 - GEOTLCOV25397AA SURRY HILSS VILLAGE - additional analyses *Importance:* High

Hi Charl,

Please analyse the following samples for TCLP leachate of lead and/or benzo(a)pyrene with a 2 day TAT.

Sampled_Date- Time	SampleCode	Field ID	TCLP Lead	TCLP Benzo(a)pyrene
13/05/2015	S15- My14517	MW1_0.5	x	x
13/05/2015	S15- My14519	MW1_2.0	х	х
13/05/2015	S15- My14522	MW2_1.0		Х
13/05/2015	S15- My14528	MW4_0.5	x	X
13/05/2015	S15- My14529	MW4_1.0		x
13/05/2015	S15- My14531	HA5_0.1	х	
13/05/2015	S15- My14533	HA6_0.5	х	х
13/05/2015	S15- My14534	HA7_0.1	х	х
13/05/2015	S15- My14540	HA8_0.2		X
14/05/2015	S15- My14538	HA5 0.3	х	x
14/05/2015	S15- My14539	HA7_0.3	x	х

Sincerely,

Daniel Guille

198 # 459031

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:

Daniel Guille

Report Project name Project ID Received Date **459646-W** SURRY HILLS SHOPPING CENTRE GEOTLCOV25397AA May 29, 2015

Client Sample ID			QC6
Sample Matrix			Water
Eurofins mgt Sample No.			S15-My26644
Date Sampled			May 29, 2015
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	-	U	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	113
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.02	mg/L	< 0.02
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix Eurofins mgt Sample No.			QC6 Water S15-My26644
Date Sampled			May 29, 2015
Test/Reference	LO	R Unit	
Polycyclic Aromatic Hydrocarbons			
Naphthalene	0.0	01 mg/L	< 0.001
Phenanthrene	0.0	01 mg/L	< 0.001
Pyrene	0.0	01 mg/L	< 0.001
Total PAH*	0.0	01 mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	118
p-Terphenyl-d14 (surr.)	1	%	78
Heavy Metals			
Arsenic	0.0	05 mg/L	< 0.005
Cadmium	0.00	05 mg/L	< 0.0005
Chromium	0.0	05 mg/L	< 0.005
Copper	0.0	05 mg/L	< 0.005
Lead	0.0	05 mg/L	< 0.005
Mercury	0.00	01 mg/L	< 0.0001
Nickel	0.0	05 mg/L	< 0.005
Zinc	0.0	05 mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 29, 2015	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	May 29, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 29, 2015	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	May 29, 2015	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	May 29, 2015	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			

Date Reported: Jun 02, 2015

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Nar Address: Project Name Project ID:	Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067				R P	Order No.: Report #: 459646 Phone: +61 2 9406 1000 Fax: +61 2 9406 1002			+61	2 9406 1000	Received: Due: Priority: Contact Name:	May 29, 2015 5:39 PM Jun 2, 2015 2 Day Daniel Guille	
												Eurofins mgt	Client Manager: Charl Du Preez
Sample Detail		Asbestos Absence /Presence	HOLD	Eurofins mgt Suite 13	Eurofins mgt Suite 7	Halogenated Volatile Organics	Moisture Set						
	ere analysis is co oratory - NATA S		1974								-		
	tory - NATA Site		FZ / 1		X	x	X	X	X	Х	1		
	ratory - NATA Sit												
External Labora											1		
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID]		
BH10_0.1	May 29, 2015		Soil	S15-My26638		Х							
BH10_0.5	May 29, 2015		Soil	S15-My26639	Х								
	May 29, 2015		Soil	S15-My26640	Х		Х	Х		Х	1		
BH10_2.0	May 29, 2015		Soil	S15-My26641			Х	Х		Х	4		
	May 29, 2015		Soil	S15-My26642					Х	Х	4		
	May 29, 2015		Soil	S15-My26643				Х		Х	-		
	May 29, 2015		Water	S15-My26644				Х			-		
QC7	May 29, 2015		Water	S15-My26645		Х]		

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

-	_		^

IERWIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			· · ·		
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank			· · ·		
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions				
Naphthalene	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank				•	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank			· ·		
Heavy Metals					
Arsenic	mg/L	< 0.005	0.005	Pass	
Cadmium	mg/L	< 0.0005	0.0005	Pass	
Chromium	mg/L	< 0.005	0.005	Pass	
Copper	mg/L	< 0.005	0.005	Pass	
Lead	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.005	0.005	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions				

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9			%	80		70-130	Pass	
TRH C10-C14			%	83		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	94		70-130	Pass	
Toluene			%	95		70-130	Pass	
Ethylbenzene			%	94		70-130	Pass	
m&p-Xylenes			%	95		70-130	Pass	
o-Xylene			%	94		70-130	Pass	
Xylenes - Total			%	94		70-130	Pass	
LCS - % Recovery				-			-	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions						
Naphthalene			%	113		70-130	Pass	
TRH C6-C10			%	81		70-130	Pass	
TRH >C10-C16			%	93		70-130	Pass	
LCS - % Recovery					1	1		
Polycyclic Aromatic Hydrocarbons	6							
Acenaphthene			%	123		70-130	Pass	
Acenaphthylene			%	127		70-130	Pass	
Anthracene			%	93		70-130	Pass	
Benz(a)anthracene			%	91		70-130	Pass	
Benzo(a)pyrene			%	103		70-130	Pass	
Benzo(b&j)fluoranthene			%	103		70-130	Pass	
Benzo(g.h.i)perylene			%	95		70-130	Pass	
Benzo(k)fluoranthene			%	105		70-130	Pass	
Chrysene			%	103		70-130	Pass	
Dibenz(a.h)anthracene			%	91		70-130	Pass	
Fluoranthene			%	86		70-130	Pass	
Fluorene			%	111		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	90		70-130	Pass	
Naphthalene			%	80		70-130	Pass	
Phenanthrene			%	110		70-130	Pass	
Pyrene			%	93		70-130	Pass	
LCS - % Recovery				1		T		
Heavy Metals							_	
Arsenic			%	105		70-130	Pass	
Cadmium			%	107		70-130	Pass	
Chromium			%	105		70-130	Pass	
Copper			%	105		70-130	Pass	
Lead			%	93		70-130	Pass	
Mercury			%	105		70-130	Pass	
Nickel			%	102		70-130	Pass	
Zinc		0.4	%	111		70-130	Pass	Ouglifisher
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals			• :	Result 1				
Arsenic	S15-My26618	NCP	%	104		70-130	Pass	
Cadmium	S15-My26618	NCP	%	103		70-130	Pass	
Chromium	S15-My26618	NCP	%	103		70-130	Pass	
Copper	S15-My26618	NCP	%	101		70-130	Pass	
Lead	S15-My26618	NCP	%	91		70-130	Pass	
Mercury	S15-My26618	NCP	%	103		70-130	Pass	
Nickel	S15-My26618	NCP	%	99		70-130	Pass	
Zinc	S15-My26618	NCP	%	115		70-130	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S15-My26618	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cadmium	S15-My26618	NCP	mg/L	< 0.0005	< 0.0005	<1	30%	Pass	
Chromium	S15-My26618	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Copper	S15-My26618	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Lead	S15-My26618	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S15-My26618	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S15-My26618	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	S15-My26618	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
NO4	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX

 N04
 analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

 N07
 the total of the two co-eluting PAHs

Authorised By

Charl Du Preez	Analytical Services Manager
Ivan Taylor	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

A

Glenn Jackson National Laboratory Manager Final report - this Report software any providently inserted Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:

Daniel Guille

Report Project name Project ID Received Date **459646-S** SURRY HILLS SHOPPING CENTRE GEOTLCOV25397AA May 29, 2015

mgt

Client Sample ID			BH10_1.0	BH10_2.0	BH10_3.0	QC5	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S15-My26640	S15-My26641	S15-My26642	S15-My26643	
Date Sampled			May 29, 2015	May 29, 2015	May 29, 2015	May 29, 2015	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions						
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50	
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50	
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	< 50	
BTEX							
Benzene	0.1	mg/kg	0.1	0.1	-	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	79	79	-	78	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100	
Halogenated Volatile Organics		_					
1.1-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-	
1.1-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-	
1.1.1-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-	
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-	
1.1.2-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-	
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-	
1.2-Dibromoethane	0.5	mg/kg	-	-	< 0.5	-	
1.2-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-	
1.2-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-	
1.2-Dichloropropane	0.5	mg/kg	-	-	< 0.5	-	
1.2.3-Trichloropropane	0.5	mg/kg	-	-	< 0.5	-	
1.3-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-	
1.3-Dichloropropane	0.5	mg/kg	-	-	< 0.5	-	

Client Sample ID			BH10_1.0 Soil	BH10_2.0 Soil	BH10_3.0 Soil	QC5 Soil	
Sample Matrix							
Eurofins mgt Sample No.			S15-My26640	S15-My26641	S15-My26642	S15-My26643	
Date Sampled			May 29, 2015	May 29, 2015	May 29, 2015	May 29, 2015	
Test/Reference	LOR	Unit					
Halogenated Volatile Organics							
1.4-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-	
Bromodichloromethane	0.5	mg/kg	-	-	< 0.5	-	
Bromoform	0.5	mg/kg	-	-	< 0.5	-	
Bromomethane	0.5	mg/kg	-	-	< 0.5	-	
Carbon Tetrachloride	0.5	mg/kg	-	-	< 0.5	-	
Chlorobenzene	0.5	mg/kg	-	-	< 0.5	-	
Chloroform	0.5	mg/kg	-	-	< 0.5	-	
Chloromethane	0.5	mg/kg	-	-	< 0.5	-	
cis-1.2-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-	
cis-1.3-Dichloropropene	0.5	mg/kg	-	-	< 0.5	-	
Dibromochloromethane	0.5	mg/kg	-	-	< 0.5	-	
Dibromomethane	0.5	mg/kg	-	-	< 0.5	-	
lodomethane	0.5	mg/kg	-	-	< 0.5	-	
Methylene Chloride	0.5	mg/kg	-	-	< 0.5	-	
Tetrachloroethene	0.5	mg/kg	-	-	< 0.5	-	
trans-1.2-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-	
trans-1.3-Dichloropropene	0.5	mg/kg	-	-	< 0.5	-	
Trichloroethene	0.5	mg/kg	-	-	< 0.5	-	
Trichlorofluoromethane	0.5	mg/kg	-	-	< 0.5	-	
Vinyl chloride	0.5	mg/kg	-	-	< 0.5	-	
Fluorobenzene (surr.)	1	%	-	-	92	-	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.0	1.0	-	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.3	1.3	-	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.6	1.6	-	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	0.6	-	< 0.5	
Benz(a)anthracene	0.5	mg/kg	0.8	1.1	-	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	0.8	0.8	-	< 0.5	
Benzo(b&j)fluoranthene ^{N07} Benzo(g.h.i)perylene	0.5	mg/kg	0.8	0.6	-	< 0.5	
	0.5	mg/kg	< 0.5	< 0.5	-		
Benzo(k)fluoranthene Chrysene	0.5	mg/kg	0.7	0.7	-	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Fluoranthene	0.5	mg/kg	1.3	2.1	-	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg mg/kg	< 0.5	< 0.5	-	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Phenanthrene	0.5	mg/kg	0.7	1.8	-	< 0.5	
Pyrene	0.5	mg/kg	1.3	1.8	-	< 0.5	
Total PAH*	0.5	mg/kg	7.1	1.0	-	< 0.5	
2-Fluorobiphenyl (surr.)	1	111g/kg %	120	129	-	121	
p-Terphenyl-d14 (surr.)	1	%	112	129	-	118	
Organochlorine Pesticides		70		100		110	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	_	_	
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-	
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-	
	0.05	mg/kg	< 0.05	< 0.05	-		

Client Sample ID			BH10_1.0	BH10_2.0	BH10_3.0	QC5	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S15-My26640	S15-My26641	S15-My26642	S15-My26643	
Date Sampled			May 29, 2015	May 29, 2015	May 29, 2015	May 29, 2015	
Test/Reference	LOR	Unit				-	
Organochlorine Pesticides							
a-BHC	0.05	mg/kg	< 0.05	< 0.05	_	-	
Aldrin	0.05	mg/kg	< 0.05	< 0.05	_	-	
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-	
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-	
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-	
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-	
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-	
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-	
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-	
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-	
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	-	
Toxaphene	1	mg/kg	< 1	< 1	-	-	
Dibutylchlorendate (surr.)	1	%	93	119	-	-	
Tetrachloro-m-xylene (surr.)	1	%	95	111	-	-	
Polychlorinated Biphenyls (PCB)							
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	-	
Total PCB*	0.1	mg/kg	< 0.5	< 0.5	-	-	
Dibutylchlorendate (surr.)	1	%	93	119	-	-	
Heavy Metals							
Arsenic	2	mg/kg	21	2.1	-	5.9	
Cadmium	0.4	mg/kg	0.8	< 0.4	-	< 0.4	
Chromium	5	mg/kg	7.2	< 5	-	7.7	
Copper	5	mg/kg	23	7.4	-	< 5	
Lead	5	mg/kg	160	90	-	12	
Mercury	0.05	mg/kg	0.49	0.44	-	0.09	
Nickel	5	mg/kg	11	< 5	-	< 5	
Zinc	5	mg/kg	410	180	-	18	
% Moisture	0.1	%	11	8.6	12	8.9	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 01, 2015	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Jun 01, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 01, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 01, 2015	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	Jun 02, 2015	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
Halogenated Volatile Organics	Sydney	Jun 01, 2015	7 Day
- Method: E016 Volatile Halogenated Compounds (VHC)			
Eurofins mgt Suite 13			
Organochlorine Pesticides	Sydney	Jun 01, 2015	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Jun 01, 2015	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
% Moisture	Sydney	May 29, 2015	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Nar Address: Project Name Project ID:	 Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067 t Name: SURRY HILLS SHOPPING CENTRE 				R P	order epor hone ax:	t #:			646 2 9406 1000 2 9406 1002	Received: Due: Priority: Contact Name:	May 29, 2015 5:39 PM Jun 2, 2015 2 Day Daniel Guille	
												Eurofins mgt	Client Manager: Charl Du Preez
		Sample Detail			Asbestos Absence /Presence	HOLD	Eurofins mgt Suite 13	Eurofins mgt Suite 7	Halogenated Volatile Organics	Moisture Set			
	ere analysis is co oratory - NATA S		1071								-		
	tory - NATA Site		+∠/1		X	x	X	X	X	Х	-		
	ratory - NATA Sit												
External Labora											1		
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
BH10_0.1	May 29, 2015		Soil	S15-My26638		Х]		
BH10_0.5	May 29, 2015		Soil	S15-My26639	Х								
BH10_1.0	May 29, 2015		Soil	S15-My26640	Х		Х	Х		Х			
BH10_2.0	May 29, 2015		Soil	S15-My26641			Х	Х		Х			
	May 29, 2015		Soil	S15-My26642					Х	Х			
	May 29, 2015		Soil	S15-My26643				Х		Х	4		
	May 29, 2015		Water	S15-My26644				Х			4		
QC7	May 29, 2015		Water	S15-My26645		Х							

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

IERIVIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		-				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank			1 1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	mg/ng	100		100	1 400	
Halogenated Volatile Organics				1		
1.1-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2.7-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5		0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5		0.5	Pass	
Bromoform	mg/kg	< 0.5		0.5	Pass	
Bromomethane		< 0.5		0.5	Pass	
	mg/kg			1	1	
Carbon Tetrachloride	mg/kg	< 0.5		0.5	Pass	
Chlorobenzene	mg/kg	< 0.5		0.5	Pass	
Chloroform	mg/kg	< 0.5		0.5	Pass	
Chloromethane	mg/kg	< 0.5		0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5		0.5	Pass	
Dibromomethane	mg/kg	< 0.5		0.5	Pass	
lodomethane	mg/kg	< 0.5		0.5	Pass	
Methylene Chloride	mg/kg	< 0.5		0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5		0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
trans-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Trichloroethene	mg/kg	< 0.5	0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Method Blank			 	-	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		1	- 1	r	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank				1	
Polychlorinated Biphenyls (PCB)	I				
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total PCB*	mg/kg	< 0	0.1	Pass	
Method Blank			 -		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	%	100	70-130	Pass	
TRH C10-C14	%	71	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	101	70-130	Pass	
Toluene	%	88	70-130	Pass	
Ethylbenzene	%	91	70-130	Pass	
m&p-Xylenes	%	94	70-130	Pass	
o-Xylene	%	100	70-130	Pass	
Xylenes - Total	%	96	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons				
Naphthalene	%	96	70-130	Pass	
TRH C6-C10	%	92	70-130	Pass	
TRH >C10-C16	%	77	70-130	Pass	
LCS - % Recovery			I		
Halogenated Volatile Organics					
1.1-Dichloroethane	%	107	75-125	Pass	
1.1-Dichloroethene	%	71	70-130	Pass	
1.1.1-Trichloroethane	%	106	70-130	Pass	
1.1.1.2-Tetrachloroethane	%	99	70-130	Pass	
1.1.2-Trichloroethane	%	117	70-130	Pass	
1.1.2.2-Tetrachloroethane	%	108	70-130	Pass	
1.2-Dibromoethane	%	117	70-130	Pass	
1.2-Dichlorobenzene	%	116	70-130	Pass	
1.2-Dichloroethane	%	112	70-130	Pass	
1.2-Dichloropropane	%	110	70-130	Pass	
1.2.3-Trichloropropane	%	118	70-130	Pass	
1.3-Dichlorobenzene	%	114	70-130	Pass	
1.3-Dichloropropane	%	112	70-130	Pass	
1.4-Dichlorobenzene	%	112	70-130	Pass	
Bromodichloromethane	%	106	70-130	Pass	
Bromoform	%	115	70-130	Pass	
Carbon Tetrachloride	%	110	70-130	Pass	
Chlorobenzene	%	102	70-130	Pass	
Chloroform	%	102	70-130	Pass	
Chloromethane	%	84	70-130	Pass	
cis-1.2-Dichloroethene	%	71	70-130	Pass	
cis-1.3-Dichloropropene	%	104	70-130	Pass	
• •	%	104	70-130	Pass	
Dibromochloromethane					

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Iodomethane	%	79	70-130	Pass	
Methylene Chloride	%	78	70-130	Pass	
Tetrachloroethene	%	115	70-130	Pass	
trans-1.2-Dichloroethene	%	106	70-130	Pass	
trans-1.3-Dichloropropene	%	104	70-130	Pass	
Trichloroethene	%	112	70-130	Pass	
Trichlorofluoromethane	%	41	70-130	Fail	Q17
Vinyl chloride	%	87	70-130	Pass	
LCS - % Recovery			· ·		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	126	70-130	Pass	1
Acenaphthylene	%	127	70-130	Pass	1
Anthracene	%	111	70-130	Pass	
Benz(a)anthracene	%	126	70-130	Pass	
Benzo(a)pyrene	%	125	70-130	Pass	
Benzo(b&j)fluoranthene	%	108	70-130	Pass	
Benzo(g.h.i)perylene	%	119	70-130	Pass	
Benzo(k)fluoranthene	%	119	70-130	Pass	
Chrysene	%	123	70-130	Pass	
Dibenz(a.h)anthracene	%	123	70-130	Pass	
				-	
Fluoranthene	%	122	70-130	Pass	
Fluorene	%	127	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	121	70-130	Pass	
Naphthalene	%	128	70-130	Pass	
Phenanthrene	%	106	70-130	Pass	
Pyrene	%	125	70-130	Pass	
LCS - % Recovery		I [
Organochlorine Pesticides					
Chlordanes - Total	%	112	70-130	Pass	
4.4'-DDD	%	106	70-130	Pass	
4.4'-DDE	%	124	70-130	Pass	
4.4'-DDT	%	126	70-130	Pass	
a-BHC	%	99	70-130	Pass	
Aldrin	%	99	70-130	Pass	
b-BHC	%	115	70-130	Pass	
d-BHC	%	93	70-130	Pass	
Dieldrin	%	119	70-130	Pass	
Endosulfan I	%	126	70-130	Pass	
Endosulfan II	%	130	70-130	Pass	
Endosulfan sulphate	%	109	70-130	Pass	
Endrin	%	127	70-130	Pass	
Endrin aldehyde	%	101	70-130	Pass	
Endrin ketone	%	116	70-130	Pass	
g-BHC (Lindane)	%	106	70-130	Pass	
Heptachlor	%	122	70-130	Pass	
Heptachlor epoxide	%	116	70-130	Pass	
Methoxychlor	%	123	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls (PCB)					
Aroclor-1260	%	100	70-130	Pass	
LCS - % Recovery	///	100	10-100	1 435	
Heavy Metals					
	%	110	70.420	Page	
Arsenic		119	70-130	Pass	
Cadmium	%	120	70-130	Pass	

Tes	t		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Chromium				105		70-130	Pass	
Copper			%	120		70-130	Pass	
Lead			%	118		70-130	Pass	
Mercury			%	115		70-130	Pass	
Nickel			%	119		70-130	Pass	
Zinc			%	122		70-130	Pass	
Test	04			Result 1		Acceptance	Pass	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1				
TRH C10-C14	S15-Jn01232	NCP	%	72		70-130	Pass	
Spike - % Recovery				<u>.</u>				
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	S15-Jn01232	NCP	%	82		70-130	Pass	
Spike - % Recovery	010 010 1202	1101	70	02	<u> </u>	10 100	1 400	
Heavy Metals				Result 1				
Arsenic	S15-Jn01048	NCP	%	107		70-130	Pass	
Cadmium	S15-Jn01048	NCP	%	87		70-130	Pass	+
Chromium	S15-Jn01048 S15-Jn01048	NCP	%	110		70-130	Pass	
		1	%	92				
Copper	S15-My22951	NCP		-		70-130	Pass	
Lead	S15-My22951	NCP	%	96		70-130	Pass	
Mercury	S15-Jn01048	NCP	%	92		70-130	Pass	ļ
Nickel	S15-Jn01048	NCP	%	96		70-130	Pass	
Zinc	S15-My22951	NCP	%	92		70-130	Pass	
Spike - % Recovery				1	1 1 1			
Organochlorine Pesticides		1		Result 1				
Chlordanes - Total	S15-My26641	CP	%	111		70-130	Pass	
4.4'-DDD	S15-My26641	CP	%	119		70-130	Pass	
4.4'-DDE	S15-My26641	CP	%	99		70-130	Pass	
4.4'-DDT	S15-My26641	CP	%	127		70-130	Pass	
a-BHC	S15-My26641	CP	%	105		70-130	Pass	
Aldrin	S15-My26641	CP	%	100		70-130	Pass	
b-BHC	S15-My26641	CP	%	119		70-130	Pass	
d-BHC	S15-My26641	CP	%	103		70-130	Pass	
Dieldrin	S15-My26641	CP	%	121		70-130	Pass	
Endosulfan I	S15-My26641	CP	%	100		70-130	Pass	
Endosulfan II	S15-My26641	CP	%	122		70-130	Pass	
Endosulfan sulphate	S15-My26641	CP	%	108		70-130	Pass	
Endrin	S15-My26641	CP	%	127		70-130	Pass	
Endrin aldehyde	S15-My26641	CP	%	93		70-130	Pass	
Endrin ketone	S15-My26641	CP	%	113		70-130	Pass	
g-BHC (Lindane)	S15-My26641	CP	%	112		70-130	Pass	
Heptachlor	S15-My26641	CP	%	125		70-130	Pass	
Heptachlor epoxide	S15-My26641	CP	%	115		70-130	Pass	
Methoxychlor	S15-My26641	CP	%	115		70-130	Pass	1
Spike - % Recovery	010 My20041	01	70	1 110		10 100	1 455	
Polychlorinated Biphenyls (PCE	2)			Result 1				łł
Aroclor-1260	S15-My26641	CP	%	96		70-130	Pass	+
Spike - % Recovery	010-101920041		/0	30		10-100	1 035	
				Result 1				
Halogenated Volatile Organics	C15 MU00000	NOD	0/	Result 1		7E 405	Dece	
1.1-Dichloroethane	S15-My23329	NCP	%	92		75-125	Pass	
1.1-Dichloroethene	S15-My23329	NCP	%	102		70-130	Pass	
1.1.1-Trichloroethane	S15-My23329	NCP	%	81		70-130	Pass	
1.1.1.2-Tetrachloroethane	S15-My23329	NCP	%	80		70-130	Pass	
1.1.2-Trichloroethane	S15-My23329	NCP	%	94		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
1.1.2.2-Tetrachloroethane				70-130	Pass				
1.2-Dibromoethane	S15-My23329	29 NCP % 92			70-130	Pass			
1.2-Dichlorobenzene	S15-My23329	NCP	%	93			70-130	Pass	
1.2-Dichloroethane	S15-My23329	NCP	%	90			70-130	Pass	
1.2-Dichloropropane	S15-My23329	NCP	%	90			70-130	Pass	
1.2.3-Trichloropropane	S15-My23329	NCP	%	96			70-130	Pass	
1.3-Dichlorobenzene	S15-My23329	NCP	%	92			70-130	Pass	
1.3-Dichloropropane	S15-My23329	NCP	%	94			70-130	Pass	
1.4-Dichlorobenzene	S15-My23329	NCP	%	93			70-130	Pass	
Bromodichloromethane	S15-My23329	NCP	%	72			70-130	Pass	
Bromoform	S15-My23329	NCP	%	79			70-130	Pass	
Carbon Tetrachloride	S15-My23329	NCP	%	79			70-130	Pass	
Chlorobenzene	S15-My23329	NCP	%	94			70-130	Pass	
Chloroform	S15-My23329	NCP	%	93			70-130	Pass	
Chloromethane	S15-My23329	NCP	%	101			70-130	Pass	
cis-1.2-Dichloroethene	S15-My23329	NCP	%	95			70-130	Pass	
cis-1.3-Dichloropropene	S15-My23329	NCP	%	75			70-130	Pass	
Dibromochloromethane	S15-My23329	NCP	%	79			70-130	Pass	
Dibromomethane	S15-My23329	NCP	%	86			70-130	Pass	
lodomethane	S15-My23329	NCP	%	93			70-130	Pass	
Methylene Chloride	S15-My23329	NCP	%	88			70-130	Pass	
Tetrachloroethene	S15-My23329	NCP	%	90			70-130	Pass	
trans-1.2-Dichloroethene	S15-My23329	NCP	%	90			70-130	Pass	
trans-1.3-Dichloropropene	S15-My23329	NCP	%	75			70-130	Pass	
Trichloroethene	S15-My23329	NCP	%	88			70-130	Pass	
Trichlorofluoromethane	S15-My23329	NCP	%	81			70-130	Pass	
Vinyl chloride	S15-My23329	NCP	%	92			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance	Pass Pass Limits	Qualifying Code
Duplicate		oouroc					Linito	Ennito	0000
Dupilouto				-					
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
Total Recoverable Hydrocarbons			ma/ka	Result 1	Result 2	RPD <1	30%	Pass	
TRH C10-C14	S15-Jn01231	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14 TRH C15-C28	S15-Jn01231 S15-Jn01231	NCP NCP	mg/kg	< 20 < 50	< 20 < 50	<1 <1	30%	Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36	S15-Jn01231	NCP	00	< 20	< 20	<1			
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	S15-Jn01231 S15-Jn01231 S15-Jn01231	NCP NCP NCP	mg/kg	< 20 < 50 < 50	< 20 < 50 < 50	<1 <1 <1	30%	Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract	NCP NCP NCP	mg/kg mg/kg	< 20 < 50 < 50 Result 1	< 20 < 50 < 50 Result 2	<1 <1 <1 RPD	30% 30%	Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231	NCP NCP NCP ions	mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50	< 20 < 50 < 50 Result 2 < 50	<1 <1 <1 RPD <1	30% 30% 30%	Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231	NCP NCP NCP ions NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100	< 20 < 50 < 50 Result 2 < 50 < 100	<1 <1 <1 RPD <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231	NCP NCP NCP ions	mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50	< 20 < 50 < 50 Result 2 < 50	<1 <1 <1 RPD <1	30% 30% 30%	Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231	NCP NCP NCP ions NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100	< 20 < 50 < 50 Result 2 < 50 < 100 < 100	<1 <1 <1 RPD <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231	NCP NCP NCP ions NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2	<1 <1 RPD <1 <1 <1 <1 <1 RPD	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231 IS S15-Jn01045	NCP NCP NCP ions NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 RPD <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231 s15-Jn01231 S15-Jn01045 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 RPD <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01045 S15-Jn01045 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01045 S15-Jn01045 S15-Jn01045 S15-Jn01045	NCP NCP NCP ions NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01045 S15-Jn01045 S15-Jn01045 S15-Jn01045	NCP NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01045 S15-Jn01045 S15-Jn01045 S15-Jn01045 S15-Jn01045	NCP NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01045 S15-Jn01045 S15-Jn01045 S15-Jn01045 S15-Jn01045 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benz(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene	S15-Jn01231 S15-Jn01045	NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 < 0.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b§)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	S15-Jn01231 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 < 100 Result 2 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benz(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene	S15-Jn01231 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 < 0.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b§)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	S15-Jn01231 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 < 100 Result 2 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01231 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 Result 1 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 Result 2 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	S15-Jn01231 S15-Jn01231 S15-Jn01231 - 2013 NEPM Fract S15-Jn01231 S15-Jn01045 S15-Jn01045	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 < 100 Result 1 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 < 100 Result 2 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
				Deput 1	Result 2	RPD	1		
Polycyclic Aromatic Hydrocarbons			malka	Result 1	1		20%	Deee	
Phenanthrene	S15-Jn01045	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S15-Jn01045	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Desult	Desult 0		1	1	
Organochlorine Pesticides	045 14-00704	NOD		Result 1	Result 2	RPD	000/	Dere	
Chlordanes - Total	S15-My26701	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S15-My20836	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S15-My20836	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S15-My20836	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S15-My26701	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S15-My26701	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S15-My20836	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				1			•		
Polychlorinated Biphenyls (PCB)		i	I	Result 1	Result 2	RPD			
Aroclor-1016	S15-My20836	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S15-My20836	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S15-My20836	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S15-My20836	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S15-My20836	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S15-My20836	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			I		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S15-Jn01047	NCP	mg/kg	4.0	4.3	9.0	30%	Pass	
Cadmium	S15-Jn01047	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S15-Jn01047	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S15-Jn01047	NCP	mg/kg	26	29	10	30%	Pass	
Lead	S15-Jn01047	NCP	mg/kg	18	20	11	30%	Pass	
Mercury	S15-Jn01047	NCP	mg/kg	0.080	0.090	10	30%	Pass	
Nickel	S15-Jn01047	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S15-Jn01047	NCP	mg/kg	9.5	10	9.0	30%	Pass	
Duplicate									
	1			Result 1	Result 2	RPD			
% Moisture	S15-My26640	CP	%	11	11	4.0	30%	Pass	
Duplicate									
Halogenated Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
		1						_	
1.1.1.2-Tetrachloroethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane 1.1.2-Trichloroethane	S15-My23328 S15-My23328	NCP NCP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	

Duplicate									
Halogenated Volatile Organics				Result 1	Result 2	RPD			
1.2-Dibromoethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
lodomethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methylene Chloride	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S15-My23328	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols ha

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically value. The "C6 C10" value. The "Total PTEX" value is obtained by arithmetically service of PTEX.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q17 LCS Recovery outside of acceptance criteria however acceptable recoveries were obtained for other compounds in this group

Authorised By

Charl Du Preez	Analytical Services Manager
Bob Symons	Senior Analyst-Inorganic (NSW)
Ivan Taylor	Senior Analyst-Metal (NSW)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

11 Jul

Glenn Jackson National Laboratory Manager Finel report - this Report software any providently inserted Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofine; Ingl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine; Ingl be liable for consequential damages including, but not initianted to, ket profile, damages for datafines and test performed on the service. This document shall not be reproduced except in full and relates only to the limits test. Unlists, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:	Daniel Guille
Report	459646-AID
Project Name	SURRY HILLS SHOPPING CENTRE
Project ID	GEOTLCOV25397AA
Received Date	May 29, 2015
Date Reported	Jun 02, 2015

Methodology:

Asbestos ID

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.

Subsampling Soil Samples The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.

Bonded The material is first examined and any fibres isolated and where required interfering organic asbestoscontaining material (ACM) The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding $400 \pm 30^{\circ}$ C. The resultant material is then ground and examined in accordance with AS 4964-2004.

Limit of Reporting The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins | mgt NATA accreditation as designated by an asterisk.

Site Number 18217 Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name SURRY HILLS SHOPPING CENTRE Project ID GEOTLCOV25397AA **Date Sampled** May 29, 2015 Report 459646-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH10_0.5	15-My26639	May 29, 2015	Approximate Sample 137g	No asbestos detected. Organic fibre detected. No respirable fibres detected.
BH10_1.0	15-My26640	May 29, 2015	Approximate Sample 211g	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Sample History

mgt

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos – LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyJun 01, 2015Indefinite

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067				Order No.: Report #: Phone: Fax:						346 2 9406 1000 2 9406 1002	Received: Due: Priority: Contact Name:	May 29, 2015 5:39 PM Jun 2, 2015 2 Day Daniel Guille	
Project Nam Project ID:		HILLS SHOPPIN COV25397AA	IG CENTRE										
												Eurofins mę	t Client Manager: Charl Du Preez
Sample Detail				Asbestos Absence /Presence	HOLD	Eurofins mgt Suite 13	Eurofins mgt Suite 7	Halogenated Volatile Organics	Moisture Set				
Laboratory wh	ere analysis is c	onducted											
	boratory - NATA		271										
	atory - NATA Site				Х	Х	Х	Х	Х	Х			
	oratory - NATA Si	te # 20794											
External Labo Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
BH10_0.1	May 29, 2015		Soil	S15-My26638		Х							
BH10_0.5	May 29, 2015		Soil	S15-My26639	Х								
BH10_1.0	May 29, 2015		Soil	S15-My26640	Х		Х	Х		Х			
BH10_2.0	May 29, 2015		Soil	S15-My26641			Х	Х		Х			
BH10_3.0	May 29, 2015		Soil	S15-My26642					Х	Х			
QC5	May 29, 2015		Soil	S15-My26643				Х		Х			
QC6	May 29, 2015		Water	S15-My26644				Х					
QC7	May 29, 2015	1	Water	S15-My26645	1	X							

Eurofins | mgt Internal Quality Control Review and Glossary General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

UNITS

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

% w/w: weight for weight b	basis grams	per kilogram
Filter loading:	fibres/	100 graticule areas
Reported Concentration:	fibres/r	mL
Flowrate:	L/min	
TERMS		
Dry	Where a moisture has been determined on a solid sample the result is expre	essed on a dry basis.
LOR	Limit of Reporting.	
сос	Chain of custody	
SRA	Sample Receipt Advice	
ISO	International Stardards Organisation	
AS	Australian Standards	
WA DOH	Western Australia Department of Health	
NOHSC	National Occupational Health and Safety Commission	
ACM	although possibly broken or fragmented, and where the asbestos is bound i to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustica ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to n	han 1% asbestos and comprises asbestos-containing-material which is in sound condition, n a matrix such as cement or resin. Common examples of ACM include but are not limited al plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and naterial that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it ragments to be smaller than this would imply a high degree of damage and hence potential
FA		ment sheet, insulation products and woven asbestos material. This type of friable asbestos at it can be broken or crumbled by hand pressure. This material is typically unbonded or
PACM	с ,	and surfacing material found in buildings, vessels, and vessel sections constructed no later ut have not been sampled or analyzed to verify or negate the presence of asbestos.
AF	small fibres (< 5 microns in length) are not considered to be such a risk. AF	17mm. It is the free fibres which present the greatest risk to human health, although very also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. e implies a substatutial degree of damage which increases the potential for fibre release.)
AC	Asbestos cement means a mixture of cement and asbestos fibres (typically	90:10 ratios).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Authorised by:

Nibha Vaidya

Senior Analyst-Asbestos (NSW)

Glenn Jackson National Laboratory Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | right shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | right liable for cost, observations of the reported execution of the reported execution of the report. In or case shall Eurofins, the respective execution of the reported execution of the report

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	Chatswood NSW 2067 Project Name: SURRY HILLS SHOPPING CENTRE				Order No.: Report #: Phone: Fax:						646 2 9406 1000 2 9406 1002	Received: Due: Priority: Contact Name:	May 29, 2015 5:39 PM Jun 2, 2015 2 Day Daniel Guille Client Manager: Charl Du Preez
Sample Detail					Asbestos Absence /Presence	HOLD	Eurofins mgt Suite 13	Eurofins mgt Suite 7	Halogenated Volatile Organics	Moisture Set			onent manager. Onan Du Freez
			4074								_		
	oratory - NATA		+2/1		X	X	X	x	X	Х			
	ratory - NATA Si									~	-		
External Labor											•		
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
BH10_0.1	May 29, 2015		Soil	S15-My26638		Х							
BH10_0.5	May 29, 2015		Soil	S15-My26639	Х								
BH10_1.0	May 29, 2015		Soil	S15-My26640	Х		Х	Х		Х			
	May 29, 2015		Soil	S15-My26641			Х	Х		Х			
BH10_3.0	May 29, 2015		Soil	S15-My26642					Х	Х	-		
QC5	May 29, 2015		Soil	S15-My26643				Х		Х			
QC6	May 29, 2015		Water	S15-My26644				Х			-		
QC7	May 29, 2015		Water	S15-My26645		Х]		

ABN - 50 005 085 521 e.mail : EnviroSa

e.mail : EnviroSales@eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Coffey Geotechnics Pty Ltd Chatswood Company name: Contact name: Daniel Guille Project name: SURRY HILLS SHOPPING CENTRE Project ID: GEOTLCOV25397AA COC number: 0801 Turn around time: 2 Day Date/Time received: May 29, 2015 5:39 PM Eurofins | mgt reference: 459646

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 17 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Metals container received as QC labelled as QC6 | Sample ID discrepancy COC: BH10_0.1 BAG & JAR BH10_0.2 ID as per COC | Sample QC5A sent to ALS as requested

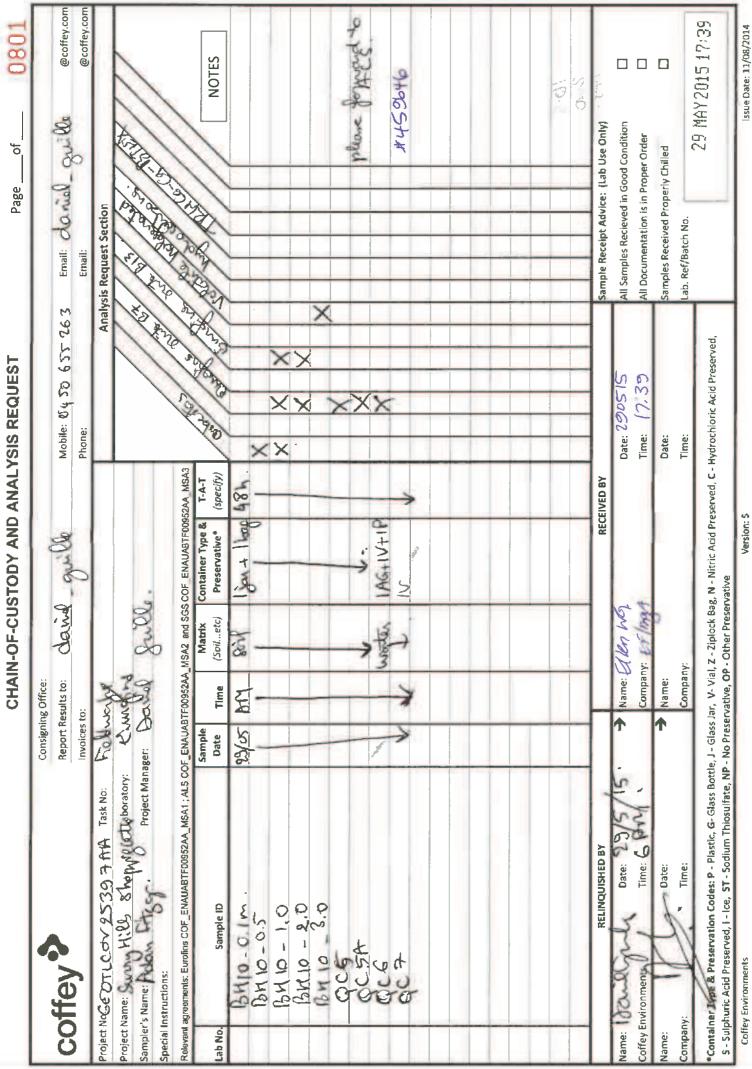
Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone : or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to Daniel Guille - daniel.guille@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Geotechnics Pty Ltd Chatswood email address.



Environmental Laboratory NATA A Air Analysis Stack E Water Analysis Trade W Soil Contamination Analysis Ground

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

Certificate of Analysis

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway

mgt

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Chatswood **NSW 2067**

Daniel Guille

Report Project name Project ID Received Date 460093-W ADDITIONAL: SURRY HILLS SHOPPING CENTRE GEOTLCOV25397AA Jun 03, 2015

Client Sample ID Sample Matrix			QC7 Water				
Eurofins mgt Sample No.			S15-Jn02700				
Date Sampled			May 29, 2015				
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	0.02	mg/L	< 0.02				
BTEX							
Benzene	0.001	mg/L	< 0.001				
Toluene	0.001	mg/L	< 0.001				
Ethylbenzene	0.001	mg/L	< 0.001				
m&p-Xylenes	0.002	mg/L	< 0.002				
o-Xylene	0.001	mg/L	< 0.001				
Xylenes - Total	0.003	mg/L	< 0.003				
4-Bromofluorobenzene (surr.)	1	%	96				
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions						
TRH C6-C10	0.02	mg/L	< 0.02				
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02				
Volatile Organics							
Naphthalene ^{N02}	0.02	mg/L	< 0.02				

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 03, 2015	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Jun 03, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 03, 2015	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Volatile Organics	Sydney	Jun 03, 2015	7 Day
- Method: E016 Volatile Organic Compounds (VOC)			

- Method: E016 Volatile Organic Compounds (VOC)

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nam Address:	me: Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067			R P	order l eport hone: ax:	Received: 460093 Due: +61 2 9406 1000 Priority: +61 2 9406 1002 Contact Na		Jun 3, 2015 12:06 PM Jun 5, 2015 2 Day Daniel Guille		
Project Name: Project ID:		ONAL: SURRY HI COV25397AA	LLS SHOPPING	6 CENTRE				Eurofi	nolmat	t Client Manager: Charl Du Pre
		Sample Detail			Lead	USA Leaching Procedure	BTEX and Volatile TRH			
Laboratory whe										
		Site # 1254 & 14	271		X					
Sydney Laborat					X	X	Х			
External Labora	Brisbane Laboratory - NATA Site # 20794									
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
QC7	May 29, 2015		Water	S15-Jn02700			Х			
1	May 29, 2015		TCLP	S15-Jn02701	X	X				

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

-	_		^

IERWIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
Method Blank					
Volatile Organics					
Naphthalene	mg/L	< 0.02	0.02	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	80	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	94	70-130	Pass	
Toluene	%	95	70-130	Pass	
Ethylbenzene	%	94	70-130	Pass	
m&p-Xylenes	%	95	70-130	Pass	
o-Xylene	%	94	70-130	Pass	
Xylenes - Total	%	94	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH C6-C10	%	83	70-130	Pass	
LCS - % Recovery					
Volatile Organics					
Naphthalene	%	113	70-130	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Charl Du Preez Ryan Hamilton Analytical Services Manager Senior Analyst-Volatile (NSW)

Glenn Jackson National Laboratory Manager Pirel report - Mie Report software any provisusly inered Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rigit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rigit be liable for cost, outs and any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rigit be liable for bost, cost, damages or expenses inclured by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins , the tests were performed on the samples as received. In this or expecting the state only by the times tested. Unless the full stress the etablestress performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:

Daniel Guille

Report Project name Project ID Received Date **460093-L** ADDITIONAL: SURRY HILLS SHOPPING CENTRE GEOTLCOV25397AA Jun 03, 2015

mgt

Client Sample ID Sample Matrix			BH10 -1.0 TCLP
Eurofins mgt Sample No.			S15-Jn02701
Date Sampled			May 29, 2015
Test/Reference	LOR	Unit	
Heavy Metals			
Lead	0.01	mg/L	0.03
USA Leaching Procedure			
Leachate Fluid ^{C01}		comment	1.0
pH (initial)	0.1	pH Units	8.3
pH (off)	0.1	pH Units	6.5
pH (USA HCI addition)	0.1	pH Units	2.1

Sample History

mgt

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Jun 03, 2015	180 Day
- Method: E022 Acid Extractable metals in Soils			
USA Leaching Procedure	Sydney	Jun 03, 2015	14 Day
- Method: E019 TCLP Preparation			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nam Address:		od	td Chatswood el Tower 799 Pac	cific Highway		R	order epor hone ax:	460093 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	Jun 3, 2015 12:06 PM Jun 5, 2015 2 Day Daniel Guille
Project Name: Project ID:		ONAL: SURRY H COV25397AA	ILLS SHOPPING	CENTRE						
					_				Eurofins mgt	Client Manager: Charl Du Preez
		Sample Detail			Lead	USA Leaching Procedure	BTEX and Volatile TRH			
Laboratory when	e analysis is c	onducted								
Melbourne Labo	ratory - NATA	Site # 1254 & 14	271							
Sydney Laborate	ory - NATA Site	# 18217			Х	Х	Х			
Brisbane Labora	tory - NATA Si	te # 20794								
External Laborat	ory			1						
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
QC7 I	<i>l</i> lay 29, 2015		Water	S15-Jn02700			Х			
3H10 -1.0	/lay 29, 2015		TCLP	S15-Jn02701	X	X				

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

-	_		^

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank											
Heavy Metals											
Lead	mg/L	< 0.01			0.01	Pass					
Test Lab Sample ID QA Source				Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Spike - % Recovery											
Heavy Metals				Result 1							
Lead	S15-Jn03517	NCP	%	91			70-130	Pass			
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Duplicate											
Heavy Metals				Result 1	Result 2	RPD					
Lead	S15-Jn03516	NCP	mg/L	0.090	0.10	3.0	30%	Pass			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

 Code
 Description

 C01
 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Charl Du Preez Ivan Taylor Analytical Services Manager Senior Analyst-Metal (NSW)

Glenn Jackson National Laboratory Manager Pirel report - this Report software any provisuoly issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nam Address:		od	td Chatswood el Tower 799 Pac	ific Highway		R P	Order No Report # Phone: Fax:	460093 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	Jun 3, 2015 12:06 PM Jun 5, 2015 2 Day Daniel Guille
Project Name: Project ID:		NAL: SURRY H OV25397AA	ILLS SHOPPING	CENTRE						
									Eurofins mgt	Client Manager: Charl Du Preez
Sample Detail				Lead	USA Leaching Procedure	BTEX and Volatile TRH				
Laboratory wher	e analysis is c	onducted								
Melbourne Labo	atory - NATA	Site # 1254 & 14	271							
Sydney Laborato					X	Х	Х			
Brisbane Labora		te # 20794								
External Laborat										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
QC7	lay 29, 2015		Water	S15-Jn02700			Х			
BH10 -1.0	lay 29, 2015		TCLP	S15-Jn02701	X	X				

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

urofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Coffey Geotechnics Pty Ltd Chatswood
Contact name:	Daniel Guille
Project name:	ADDITIONAL: SURRY HILLS SHOPPING CENTRE
Project ID:	GEOTLCOV25397AA
COC number:	Not provided
Turn around time:	2 Day
Date/Time received:	Jun 3, 2015 12:06 PM
Eurofins mgt reference:	460093

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 17 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone : or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to Daniel Guille - daniel.guille@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Geotechnics Pty Ltd Chatswood email address.

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

460093

From: Charl DuPreez Sent: Wednesday, 3 June 2015 12:06 PM To: EnviroSampleNSW Subject: FW: Eurofins [mgt Test Results - Report 459646 : Site SURRY HILLS SHOPPING CENTRE (GEOTLCOV25397AA)

Additional analysis please.

48hr TAT.

Charl DuPreez Phone : +61 2 9900 8415 Email : CharlDuPreez@eurofins.com.au

From: Daniel Guille [mailto:Daniel.Guille@coffey.com] Sent: Wednesday, 3 June 2015 12:00 PM To: Charl DuPreez Subject: RE: Eurofins | mgt Test Results - Report 459646 : Site SURRY HILLS SHOPPING CENTRE (GEOTLCOV25397AA)

Hi Charl,

Could you please organise additional analyses for samples of this batch.

- QC7 for TPH C6-C10/BTEX
- BH10-1.0 for TCLP for lead

With a 48h TAT. Thanks,

Sincerely,

Daniel Guille Senior Environmental Scientist

m: +61 0 450 655 263 t: +61 2 94061000 d: +61 2 94061095

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1522078
------------	-------------

Client Contact Address	: COFFEY GEOTECHNICS : MR DANIEL GUILLE :	Laboratory Contact Address	 Environmental Division Sydney 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: daniel.guille@coffey.com : :	E-mail Telephone Facsimile	: : +61-2-8784 8555 : +61-2-8784 8500
Project	EGEOTLCOV25397AA SURRY HILLS	Page	: 1 of 2
Order number	:	Quote number	: EB2014COFGEO0309 (EN/077/14)
C-O-C number	: 0354	QC Level	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
Sampler	:		
Dates			
Date Samples Receiv	ed : 15-May-2015	Issue Date	: 15-May-2015
Client Requested Due Date	-	Scheduled Reporting I	2
Delivery Detail	ls		
Mode of Delivery	: Carrier	Security Seal	: Intact.
No. of coolers/boxes	: 1	Temperature	: 17.8'C
Receipt Detail	:	No. of samples receive	ed / analysed : 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL	Client sampling	Client sample ID	SOIL - EA055-103	SOIL - S-26
Laboratory sample	date / time		Moisture Content	8 metals/TRH/BTEXN/PAH
ES1522078-001	[13-May-2015]	QC1A	√	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

DANIEL GUILLE

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)
- A4 AU Tax Invoice (INV)
- Chain of Custody (CoC) (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

Email Email Email Print Email Email Email Email Email daniel.guille@coffey.com daniel.guille@coffey.com DANIEL GUILLE daniel.guille@coffey.com daniel.guille@coffey.com daniel.guille@coffey.com daniel.guille@coffey.com

QA/QC Compliance Assessment for DQO Reporting				
Work Order	: ES1522078	Page	: 1 of 4	
Client	: COFFEY ENVIRONMENTS PTY LTD	Laboratory	: Environmental Division Sydney	
Contact	: MR DANIEL GUILLE	Telephone	: +61-2-8784 8555	
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE	Date Samples Received	: 15-May-2015	
Site	:	Issue Date	: 21-May-2015	
Sampler	:	No. of samples received	:1	
Order number	:	No. of samples analysed	: 1	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103)						07.14 00.15	
QC1A	13-May-2015				20-May-2015	27-May-2015	
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)							
QC1A	13-May-2015	18-May-2015	09-Nov-2015	~	18-May-2015	09-Nov-2015	\checkmark
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
QC1A	13-May-2015	18-May-2015	10-Jun-2015	✓	19-May-2015	10-Jun-2015	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071)							
QC1A	13-May-2015	18-May-2015	27-May-2015	1	19-May-2015	27-Jun-2015	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))							
QC1A	13-May-2015	18-May-2015	27-May-2015	✓	19-May-2015	27-Jun-2015	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080)							
QC1A	13-May-2015	18-May-2015	27-May-2015	<u> </u>	18-May-2015	27-May-2015	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)	-	Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	2	19	10.53	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	14	14.29	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	14	14.29	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	2	18	11.11	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	14	7.14	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	14	7.14	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	14	7.14	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	14	7.14	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	14	7.14	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	14	7.14	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In-house. A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

Work Order	ES1522078	Page	: 1 of 8
Client	: COFFEY ENVIRONMENTS PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR DANIEL GUILLE	Contact	:
Address	: LEVEL 19, 799 PACIFIC HIGHWAY Tower B - Citadel Tower CHATSWOOD NSW, AUSTRALIA 2067	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: daniel_guille@coffey.com	E-mail	
Telephone	: +61 03 9290 7000	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 15-May-2015
C-O-C number	: 0354	Date Analysis Commenced	: 18-May-2015
Sampler	:	Issue Date	: 21-May-2015
Site	:	No. of samples received	: 1
Quote number	:	No. of samples analysed	:1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with	Pabi Subba	Senior Organic Chemist	Sydney Inorganics
ISO/IEC 17025.	Pabi Subba	Senior Organic Chemist	Sydney Organics
	Shobhna Chandra	Metals Coordinator	Sydney Inorganics

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A055: Moisture Co	ontent (QC Lot: 10391	5)							
ES1522077-002	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	7.9	6.6	17.5	No Limit
ES1522110-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	16.7	15.7	6.09	0% - 50%
G005T: Total Meta	Is by ICP-AES (QC Lo	t: 101511)							
ES1521860-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	10	10	RPD (%) Rt 17.5 17.5 6.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.8 0.00 16.4 0.00 0.00 147.8 0.00 0.00 47.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	8	8	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	8	8 0.00 N <5	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	10	9	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	23	19	19.8	No Limit
S1522052-009	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
	EG005T: Chromium	7440-47-3	2	mg/kg	34	29	16.4	0% - 50%	
		EG005T: Nickel	7440-02-0	2	mg/kg	8	8	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	13	8	47.8	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	29	30	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	131	136	3.66	0% - 20%
G035T: Total Rec	overable Mercury by F								
ES1521860-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1522052-009	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
P075(SIM)B: Polyr	-	ocarbons (QC Lot: 101734)							
ES1522039-021	Anonymous		83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
_01022000-021	Anonymous	EP075(SIM): Accepation the EP075(SIM): Accepation to the EP075(SIM	208-96-8	0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Acenaphthylene	120-12-7	0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Benz(a)anthracene	50-32-8	0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Benzo(a)pyrene		0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	ilig/kg	~0.5	~0.5	0.00	NO LIIIII
		ED075(SIM): Denze(a h i)pendene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	207-08-9	0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Benzo(k)fluoranthene	218-01-9	0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Chrysene	53-70-3	0.5		<0.5	<0.5		No Limit
		EP075(SIM): Dibenz(a.h)anthracene	206-44-0	0.5	mg/kg	<0.5	<0.5		No Limit
		EP075(SIM): Fluoranthene	86-73-7		mg/kg				
		EP075(SIM): Fluorene		0.5	mg/kg	<0.5	<0.5	6.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.8 0.00 16.4 0.00 47.8 0.00 3.66 0.00 <t< td=""><td>No Limit</td></t<>	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 4 of 8
Work Order	: ES1522078

Client : COFFEY ENVIRONMENTS PTY LTD Project : GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: SOIL						Laboratory	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P075(SIM)B: Poly	nuclear Aromatic Hydro	carbons (QC Lot: 101734) - continued							
ES1522039-021	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
S1522055-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
P080/071: Total P	etroleum Hydrocarbons	(QC Lot: 101726)							
W1510290-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
W1510290-005	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
P080/071: Total P	etroleum Hydrocarbons	(QC Lot: 101735)							
S1522039-021	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
S1522055-002	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	5	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
P080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 101726)			5.5				
W1510290-001	Anonymous		C6 C10	10	mg/kg	<10	<10	0.00	No Limit
W1510290-001	Anonymous	EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
	,		010	10	iiig/kg	~10	510	0.00	NO LIMIL
		ns - NEPM 2013 Fractions (QC Lot: 101735)		105				0.55	
S1522039-021	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit

Page	: 5 of 8
Work Order	: ES1522078
Client	: COFFEY ENVIRONMENTS PTY LTD
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	ecoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 101735) - continu	ied						
ES1522039-021	Anonymous	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.00	No Limit
ES1522055-002	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 101726)								
EW1510290-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
				106-42-3					
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EW1510290-005	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G005T: Total Metals by ICP-AES (QCLot: 101	511)							
G005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	99.0	92	130
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	88.8	87	121
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	89.4	80	136
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	107	93	127
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	87.4	86	124
G005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	98.4	93	131
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	91.6	81	133
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 101512)							
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	88.4	70	105
EP075(SIM)B: Polynuclear Aromatic Hydrocart	oons (QCLot: 101734)							
P075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	88.6	79	123
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	87.9	77	123
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	88.2	79	123
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	88.3	73	121
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	97.6	76	122
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	90.6	70	118
	205-82-3							
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	92.6	72	114
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	98.6	77	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	100	81	123
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	89.6	72	113
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	89.3	79	123
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	89.8	77	123
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	89.3	71	113
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	99.0	80	124
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	88.4	79	123
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	89.3	79	125
EP080/071: Total Petroleum Hydrocarbons(Q0	CLot: 101726)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	100	68	128
EP080/071: Total Petroleum Hydrocarbons(Q0	CLot: 101735)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	114	71	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	250 mg/kg	116	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	107	64	128

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCI	Lot: 101726) - co	ontinued							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	98.2	68	128		
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCI	Lot: 101735)								
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	110	70	130		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	115	74	138		
EP071: >C34 - C40 Fraction		100	mg/kg	<100	200 mg/kg	93.8	63	131		
EP080: BTEXN (QCLot: 101726)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	95.9	62	116		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	99.9	58	118		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	99.0	60	120		
	106-42-3									
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	100	62	138		
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	99.8	60	120		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	100	62	128		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL	ix: SOIL					Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Recovery	Limits (%)					
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High					
EG005T: Total Met	als by ICP-AES (QCLot: 101511)											
ES1521860-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	103	70	130					
		EG005T: Cadmium	7440-43-9	50 mg/kg	98.2	70	130					
		EG005T: Chromium	7440-47-3	50 mg/kg	99.9	70	130					
		EG005T: Copper	7440-50-8	250 mg/kg	110	70	130					
		EG005T: Lead	7439-92-1	250 mg/kg	95.6	70	130					
		EG005T: Nickel	7440-02-0	50 mg/kg	92.4	70	130					
		EG005T: Zinc	7440-66-6	250 mg/kg	92.6	70	130					
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 101512)											
ES1521860-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	107	70	130					
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 101734)											
ES1522039-021	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	84.7	70	130					
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	86.3	70	130					
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 101726)											
EW1510290-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	80.3	70	130					
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 101735)											

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 101735) - continue	d					
ES1522039-021	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	96.3	73	137
		EP071: C15 - C28 Fraction		2319 mg/kg	103	53	131
		EP071: C29 - C36 Fraction		1714 mg/kg	122	52	132
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 101726)					
EW1510290-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	79.4	70	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 101735)					
ES1522039-021	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	860 mg/kg	98.5	73	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	117	53	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	119	52	132
EP080: BTEXN (C	CLot: 101726)						
EW1510290-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	79.8	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	88.5	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	88.1	70	130
			106-42-3				
		EP080: Naphthalene	91-20-3	2.5 mg/kg	80.6	70	130
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	90.2	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	82.6	70	130

CERTIFICATE OF ANALYSIS

Work Order	ES1522078	Page	: 1 of 4
Client	: COFFEY ENVIRONMENTS PTY LTD	Laboratory	Environmental Division Sydney
Contact	: MR DANIEL GUILLE	Contact	
Address	: LEVEL 19, 799 PACIFIC HIGHWAY Tower B - Citadel Tower CHATSWOOD NSW, AUSTRALIA 2067	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: daniel_guille@coffey.com	E-mail	:
Telephone	: +61 03 9290 7000	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 15-May-2015 18:00
C-O-C number	: 0354	Date Analysis Commenced	: 18-May-2015
Sampler	:	Issue Date	21-May-2015 16:02
Site	:		
		No. of samples received	:1
Quote number	:	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Signatories NATA Accredited Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11. Accredited for compliance with NATA ISO/IEC 17025. Signatories Position Accreditation Category Pabi Subba Senior Organic Chemist Sydney Inorganics Pabi Subba Senior Organic Chemist Sydney Organics WORLD RECOGNISED Shobhna Chandra Metals Coordinator Sydney Inorganics ACCREDITATION

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
- EP071: Result of sample QC1A has been confirmed by re-extraction and re-analysis.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	QC1A				
	Cl	ient sampli	ng date / time	[13-May-2015]				
Compound		LOR	Unit	ES1522078-001				
Compound	CAS Number	LON	Unit.	Result	Result	Result	Result	Result
				Result	Result	Result	Result	Result
EA055: Moisture Content ^ Moisture Content (dried @ 103°C)		1	%	8.4				
		1	70	0.4				
EG005T: Total Metals by ICP-AES	7440.00.0	5		-F				
Arsenic	7440-38-2	5	mg/kg	<5				
Cadmium	7440-43-9	1	mg/kg	<1				
Chromium	7440-47-3	2	mg/kg	11				
Copper	7440-50-8	5	mg/kg	73				
Lead	7439-92-1	5	mg/kg	345				
Nickel	7440-02-0	2	mg/kg	9				
Zinc	7440-66-6	5	mg/kg	278				
EG035T: Total Recoverable Mercur	y by FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.3				
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	1.9				
Anthracene	120-12-7	0.5	mg/kg	0.6				
Fluoranthene	206-44-0	0.5	mg/kg	4.9				
Pyrene	129-00-0	0.5	mg/kg	5.4				
Benz(a)anthracene	56-55-3	0.5	mg/kg	2.5				
Chrysene	218-01-9	0.5	mg/kg	2.5				
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	2.8				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	1.0				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	2.3				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	1.2				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	1.5				
^ Sum of polycyclic aromatic hydrocarb		0.5	mg/kg	26.6				
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	3.1				
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	3.3				
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	3.6				
EP080/071: Total Petroleum Hydroc								
C6 - C9 Fraction		10	mg/kg	<10				
C10 - C14 Fraction		50	mg/kg	<50				
		00	i iig/kg	-00				

Page	: 4 of 4
Work Order	: ES1522078
Client	: COFFEY ENVIRONMENTS PTY LTD
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC1A				
	Cl	ient sampli	ing date / time	[13-May-2015]				
Compound	CAS Number	LOR	Unit	ES1522078-001				
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocart	oons - Continued							
C15 - C28 Fraction		100	mg/kg	240				
C29 - C36 Fraction		100	mg/kg	210				
^ C10 - C36 Fraction (sum)		50	mg/kg	450				
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10				
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10				
(F1)	-							
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50				
>C16 - C34 Fraction		100	mg/kg	370				
>C34 - C40 Fraction		100	mg/kg	170				
^ >C10 - C40 Fraction (sum)		50	mg/kg	540				
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50				
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2				
Toluene	108-88-3	0.5	mg/kg	<0.5				
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5				
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5				
^ Sum of BTEX		0.2	mg/kg	<0.2				
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5				
Naphthalene	91-20-3	1	mg/kg	<1				
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	0.5	%	79.8				
2-Chlorophenol-D4	93951-73-6	0.5	%	91.3				
2.4.6-Tribromophenol	118-79-6	0.5	%	107				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	91.5				
Anthracene-d10	1719-06-8	0.5	%	87.5				
4-Terphenyl-d14	1718-51-0	0.5	%	96.0				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	114				
Toluene-D8	2037-26-5	0.2	%	105				
4-Bromofluorobenzene	460-00-4	0.2	%	96.6				

	20 20				STODY AND		SIS	REQ	UEST	P.0				Pa	age	of	÷. 1	035
coffey	>	Consignin Report Re Invoices t	ng Office: esults to: to:	CHATS1 David hahow	NOOD (Si Q Juille ad (Colle	johey) v)) · Mobile Phone:		450	622	26	3 Emi		Jani	. العن	guil	le .	@coffey @coffey
roject Name: Sunv ampler's Name: Ma pecial Instructions: Si	COV 25397 AA Task No H:Ols Villeye Laborat naila Rohu Project inte S26= TRM/BT ns COF_ENAUABTF00952AA_MSA1; A	orv: ALS Manager: Y XXN/DA1	//	metals		952AA_MSA3			se Be	A	nalysis	Requ	lest Se	ection			7/	7
ab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	1/	1	//	//	//	//	//	$^{\prime}$	//	//	NOT	ES
1 QC	IA	13/5/15	5	Sont	1 jan .	2day	X					ſ					-	
	TA				ES	onmental Sydney k Order Refe 1522	078											
· · · · · · · · · · · · · · · · · · ·																		
	RELINQUISHED BY				REG	CEIVED BY					sa	ample	Receipt	t Advic	e: (Lab	Use Only)	
ame: Octual Sir offey Environments ame:	0. Date: (5/ 5/ 20 Time: (600 Date; Time:	15 >	Company:	5075	Septe		Date: Time: Date: / Time:	3:1	5/2 55 F 115 200		Al Sa	ll Docu amples	mentat	tion is i ved Pro		l Conditior er Order hilled		

Coffey Environments

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

Attention:

Daniel Guille

Report Project name Received Date **457829-W** GEOTLCOV25397AA May 15, 2015

Client Sample ID			MW1	MW2	MW4	DUP01
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S15-My14400	S15-My14401	S15-My14402	S15-My14403
Date Sampled			May 14, 2015	May 14, 2015	May 14, 2015	May 14, 2015
Test/Reference	LOR	Unit			,	
Total Recoverable Hydrocarbons - 1999 NEPM		0				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	0.7	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	0.9	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	1.6	< 0.1
BTEX	L					
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	90	89	89	89
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	1.5	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	0.4	< 0.1
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW1	MW2	MW4	DUP01
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S15-My14400	S15-My14401	S15-My14402	S15-My14403
Date Sampled			May 14, 2015	May 14, 2015	May 14, 2015	May 14, 2015
Test/Reference	LOR	Unit				
Volatile Organics	Lon	Onic				
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	0.002	< 0.001	0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Fluorobenzene (surr.)	1	%	98	95	94	93
4-Bromofluorobenzene (surr.)	1	%	90	89	89	89
Polycyclic Aromatic Hydrocarbons		1				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW1 Water	MW2 Water	MW4 Water	DUP01
Sample Matrix						Water
Eurofins mgt Sample No.			S15-My14400	S15-My14401	S15-My14402	S15-My14403
Date Sampled			May 14, 2015	May 14, 2015	May 14, 2015	May 14, 2015
Test/Reference	LOR	Unit			-	
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	0.010	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	0.010	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001 Q09A1	0.02 Q09A1	< 0.001
2-Fluorobiphenyl (surr.)	1	%	89	Q09A1	Q09A1	61
p-Terphenyl-d14 (surr.)	1	%	91			71
Semivolatile Organic Compounds (SVOC)	0.000		10.000	4.0.000	4.0.000	4.0.000
2-Chloronaphthalene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
2-Chlorophenol	0.002	mg/L	< 0.002 89	< 0.002 Q09A1	< 0.002 Q09A1	< 0.002
2-Fluorobiphenyl (surr.) 2-Methylnaphthalene	0.002	% mg/L	< 0.002	< 0.002	< 0.002	< 0.002
2-Methylphenol (o-Cresol)	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
2-Naphthylamine	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
2-Naphtryanine 2-Nitroaniline	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
2-Nitophenol	0.004	mg/L	< 0.002	< 0.004	< 0.004	< 0.004
3&4-Methylphenol (m&p-Cresol)	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
3-Methylcholanthrene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.004
3-Nitroaniline	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4-Aminobiphenyl	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4-Bromophenyl phenyl ether	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4-Chloro-3-methylphenol	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4-Chlorophenyl phenyl ether	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4-Nitrophenol	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDE	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDT	0.004	mg/L	< 0.004	< 0.004	< 0.004	< 0.004
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acetophenone	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Aldrin	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Aniline	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bis(2-chloroethoxy)methane	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Bis(2-chloroethyl)ether	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Bis(2-ethylhexyl)phthalate	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Butyl benzyl phthalate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Carbazole	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Chlorpyrifos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Coumaphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
d-BHC	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Demeton-O	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002

Client Sample ID			MW1	MW2	MW4	DUP01
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S15-My14400	S15-My14401	S15-My14402	S15-My14403
Date Sampled			May 14, 2015	May 14, 2015	May 14, 2015	May 14, 2015
Test/Reference	LOR	Unit				
Semivolatile Organic Compounds (SVOC)	·					
Demeton-S	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Di-n-butyl phthalate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Di-n-octyl phthalate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Diazinon	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenzofuran	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dichlorvos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dieldrin	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Diethyl phthalate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dimethoate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dimethyl phthalate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Diphenylamine	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Disulfoton	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Endosulfan sulphate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Endrin	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Endrin aldehyde	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Endrin ketone	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Ethoprop	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Fenitrothion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Fensulfothion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Fenthion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	0.010	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
g-BHC (Lindane)	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Heptachlor	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Heptachlor epoxide	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Hexachlorobenzene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Hexachlorobutadiene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Hexachlorocyclopentadiene	0.004	mg/L	< 0.004	< 0.004	< 0.004	< 0.004
Hexachloroethane	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Malathion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methoxychlor	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Methyl azinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Mevinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Monocrotophos	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
N-Nitrosodibutylamine	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
N-Nitrosodipropylamine	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
N-Nitrosopiperidine	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Nitrobenzene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Nitrobenzene-d5 (surr.)	1	%	89	Q09A1	^{Q09A} 1	Q09A1
p-Terphenyl-d14 (surr.)	1	%	91	Q09A1	^{Q09A} 1	71
Parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Pentachlorobenzene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Pentachloronitrobenzene	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Pentachlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW1	MW2	MW4	DUP01
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S15-My14400	S15-My14401	S15-My14402	S15-My14403
Date Sampled			May 14, 2015	May 14, 2015	May 14, 2015	May 14, 2015
Test/Reference	LOR	Unit				
Semivolatile Organic Compounds (SVOC)						
Phenol	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Phenol-d6 (surr.)	1	%	38	Q09A1	Q09A1	Q09A1
Phorate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Profenofos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Prothiofos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Pyrene	0.001	mg/L	< 0.001	< 0.001	0.010	< 0.001
Ronnel	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Stirophos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Trichloronate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Heavy Metals						
Arsenic	0.005	mg/L	< 0.005	0.011	< 0.005	0.009
Cadmium	0.0005	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Chromium	0.005	mg/L	< 0.005	0.041	0.006	0.032
Copper	0.005	mg/L	< 0.005	0.070	< 0.005	0.054
Lead	0.005	mg/L	< 0.005	0.15	0.017	0.12
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.005	mg/L	< 0.005	0.014	< 0.005	0.012
Zinc	0.005	mg/L	0.041	0.12	0.064	0.094

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 15, 2015	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	May 15, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 15, 2015	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	May 15, 2015	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	May 18, 2015	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
Volatile Organics	Sydney	May 15, 2015	7 Day
- Method: E016 Volatile Organic Compounds (VOC)			
Semivolatile Organic Compounds (SVOC)	Sydney	May 15, 2015	14 Day
- Method: E017 Semivolatile Organic Compounds (SVOC)			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nan Address: Project Name:	Level 18 Chatswo NSW 20	od	td Chatswood el Tower 799 Pacif	ic Highway		R P	order epor hone ax:	457829 +61 2 9406 1000 +61 2 9406 1002	Received: Due: Priority: Contact Name:	May 15, 2015 3:30 PM May 19, 2015 2 Day Daniel Guille
,.									Eurofins mgt	Client Manager: Charl Du Preez
		Sample Detail			Semivolatile Organic Compounds (SVOC)	Eurofins mgt Suite 7	Volatile Organics			
Laboratory whe										
Melbourne Labo			271							
Sydney Laborat					X	Х	Х			
Brisbane Labora		te # 20794								
External Labora Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
MW1	May 14, 2015		Water	S15-My14400	Х	Х	Х			
1	May 14, 2015		1	S15-My14401	Х	Х	Х			
MW4	May 14, 2015		Water	S15-My14402	Х	Х	Х			
DUP01	May 14, 2015		Water	S15-My14403	Х	Х	Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

-	_		^

	3	
Dry		Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR		Limit of Reporting.
SPIKE		Addition of the analyte to the sample and reported as percentage recovery.
RPD		Relative Percent Difference between two Duplicate pieces of analysis.
LCS		Laboratory Control Sample - reported as percent recovery
CRM		Certified Reference Material - reported as percent recovery
Method	Blank	In the case of solid samples these are performed on laboratory certified clean sands.
		In the case of water samples these are performed on de-ionised water.
Surr - Su	urrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicat	te	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch D	uplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch S	PIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA		United States Environmental Protection Agency
APHA		American Public Health Association
ASLP		Australian Standard Leaching Procedure (AS4439.3)
TCLP		Toxicity Characteristic Leaching Procedure
COC		Chain of Custody
SRA		Sample Receipt Advice
CP		Client Parent - QC was performed on samples pertaining to this report
NCP		Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ		Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank		· · ·			
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions				
Naphthalene	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.005	0.005	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptan Limits	ce Pass Limits	Qualifying Code
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.005	0.005	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
Iodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank		1			
Polycyclic Aromatic Hydrocarbons		10.001	0.001	Deer	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass Pass	
Dibenz(a.h)anthracene Fluoranthene	mg/L	< 0.001 < 0.001	0.001	Pass	
	mg/L				
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001 < 0.001	0.001	Pass Pass	
Pyrene Method Blank	mg/L	< 0.001	0.001	F d S S	
Semivolatile Organic Compounds (SVOC)					
2-Chloronaphthalene	mg/L	< 0.002	0.002	Pass	
2-Chlorophenol	mg/L	< 0.002	0.002	Pass	
2-Methylnaphthalene	mg/L	< 0.002	0.002	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.002	0.002	Pass	
2-Naphthylamine	mg/L	< 0.002	0.002	Pass	
2-Nitroaniline	mg/L	< 0.004	0.004	Pass	
2-Nitrophenol	mg/L	< 0.002	0.002	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.004	0.004	Pass	
3-Methylcholanthrene	mg/L	< 0.002	0.002	Pass	
4-Aminobiphenyl	mg/L	< 0.002	0.002	Pass	
4-Bromophenyl phenyl ether	mg/L	< 0.002	0.002	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
4-Chlorophenyl phenyl ether	mg/L	< 0.002	0.002	Pass	
4-Nitrophenol	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.002	0.002	Pass	
4.4'-DDE	mg/L	< 0.002	0.002	Pass	
4.4'-DDT	mg/L	< 0.004	0.004	Pass	
Acetophenone	mg/L	< 0.002	0.002	Pass	
Aldrin	mg/L	< 0.002	0.002	Pass	
Aniline	mg/L	< 0.002	0.002	Pass	
Bis(2-chloroethoxy)methane	mg/L	< 0.002	0.002	Pass	
Bis(2-ethylhexyl)phthalate	mg/L	< 0.02	0.02	Pass	
Butyl benzyl phthalate	mg/L	< 0.002	0.002	Pass	
Chlorpyrifos	mg/L	< 0.002	0.002	Pass	
Coumaphos	mg/L	< 0.002	0.002	Pass	
d-BHC	mg/L	< 0.002	0.002	Pass	
Demeton-O	mg/L	< 0.002	0.002	Pass	
Demeton-S	mg/L	< 0.002	0.002	Pass	
Di-n-butyl phthalate	mg/L	< 0.002	0.002	Pass	
Di-n-octyl phthalate	mg/L	< 0.002	0.002	Pass	
Diazinon	mg/L	< 0.002	0.002	Pass	
Dibenzofuran	mg/L	< 0.002	0.002	Pass	
Dichlorvos	mg/L	< 0.002	0.002	Pass	
Dieldrin		< 0.002	0.002	Pass	
	mg/L				
Diethyl phthalate	mg/L	< 0.002	0.002	Pass	
Dimethoate	mg/L	< 0.002	0.002	Pass	
Dimethyl phthalate	mg/L	< 0.002	0.002	Pass	
Diphenylamine	mg/L	< 0.002	0.002	Pass	
Disulfoton	mg/L	< 0.002	0.002	Pass	
Endosulfan sulphate	mg/L	< 0.002	0.002	Pass	
Endrin	mg/L	< 0.002	0.002	Pass	
Endrin aldehyde	mg/L	< 0.002	0.002	Pass	
Endrin ketone	mg/L	< 0.002	0.002	Pass	
Ethoprop	mg/L	< 0.002	0.002	Pass	
Fenitrothion	mg/L	< 0.002	0.002	Pass	
Fensulfothion	mg/L	< 0.002	0.002	Pass	
Fenthion	mg/L	< 0.002	0.002	Pass	
g-BHC (Lindane)	mg/L	< 0.002	0.002	Pass	
Heptachlor	mg/L	< 0.002	0.002	Pass	
Heptachlor epoxide	mg/L	< 0.002	0.002	Pass	
Hexachlorobenzene	mg/L	< 0.002	0.002	Pass	
Hexachlorobutadiene	mg/L	< 0.002	0.002	Pass	
Hexachlorocyclopentadiene	mg/L	< 0.004	0.004	Pass	
Hexachloroethane	mg/L	< 0.002	0.002	Pass	
Malathion	mg/L	< 0.002	0.002	Pass	
Methoxychlor	mg/L	< 0.001	0.001	Pass	
Methyl azinphos	mg/L	< 0.002	0.002	Pass	
Methyl parathion	mg/L	< 0.002	0.002	Pass	
Mevinphos	mg/L	< 0.002	0.002	Pass	
Monocrotophos	mg/L	< 0.02	0.02	Pass	
N-Nitrosodibutylamine	mg/L	< 0.002	0.002	Pass	
N-Nitrosodipropylamine	mg/L	< 0.002	0.002	Pass	
N-Nitrosopiperidine	mg/L	< 0.002	0.002	Pass	
Nitrobenzene	mg/L	< 0.002	0.002	Pass	
Parathion	mg/L	< 0.002	0.002	Pass	
Pentachlorobenzene	mg/L	< 0.002	0.002	Pass	

Test	Units	Result 1	Ad	cceptance Limits	Pass Limits	Qualifying Code
Pentachloronitrobenzene	mg/L	< 0.002		0.002	Pass	
Pentachlorophenol	mg/L	< 0.01		0.01	Pass	
Phenol	mg/L	< 0.002		0.002	Pass	
Phorate	mg/L	< 0.002		0.002	Pass	
Profenofos	mg/L	< 0.002		0.002	Pass	
Prothiofos	mg/L	< 0.002		0.002	Pass	
Ronnel	mg/L	< 0.002		0.002	Pass	
Stirophos	mg/L	< 0.002		0.002	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/L	< 0.005		0.005	Pass	
Cadmium	mg/L	< 0.0005		0.0005	Pass	
Chromium	mg/L	< 0.005		0.005	Pass	
Copper	mg/L	< 0.005		0.005	Pass	
Lead	mg/L	< 0.005		0.005	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.005		0.005	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery		•				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	83		70-130	Pass	
TRH C10-C14	%	101		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	99		70-130	Pass	
Toluene	%	100		70-130	Pass	
Ethylbenzene	%	96		70-130	Pass	
m&p-Xylenes	%	98		70-130	Pass	
o-Xylene	%	97		70-130	Pass	
Xylenes - Total	%	94		70-130	Pass	
LCS - % Recovery		• •				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	95		70-130	Pass	
TRH C6-C10	%	93		70-130	Pass	
TRH >C10-C16	%	98		70-130	Pass	
LCS - % Recovery			· · ·			
Volatile Organics						
1.1-Dichloroethene	%	100		70-130	Pass	
1.1.1-Trichloroethane	%	93		70-130	Pass	
1.1.1.2-Tetrachloroethane	%	88		70-130	Pass	
1.1.2-Trichloroethane	%	97		70-130	Pass	
1.1.2.2-Tetrachloroethane	%	92		70-130	Pass	
1.2-Dibromoethane	%	94		70-130	Pass	
1.2-Dichlorobenzene	%	98		70-130	Pass	
1.2-Dichloroethane	%	97		70-130	Pass	
1.2-Dichloropropane	%	98		70-130	Pass	
1.2.3-Trichloropropane	%	96		70-130	Pass	
1.2.4-Trimethylbenzene	%	97		70-130	Pass	
1.3-Dichlorobenzene	%	98		70-130	Pass	
	%	98		70-130	Pass	
1.3-Dichloropropane		1 1				
1.3-Dichloropropane 1.3.5-Trimethylbenzene		97		70-130	Pass	
1.3.5-Trimethylbenzene	%	97 100		70-130	Pass Pass	
• •		97 100 92		70-130 70-130 70-130	Pass Pass Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
4-Methyl-2-pentanone (MIBK)	%	88		70-130	Pass	
Benzene	%	97		70-130	Pass	
Bromobenzene	%	98		70-130	Pass	
Bromochloromethane	%	102		70-130	Pass	
Bromodichloromethane	%	89		70-130	Pass	
Bromoform	%	87		70-130	Pass	
Carbon disulfide	%	95		70-130	Pass	
Carbon Tetrachloride	%	99		70-130	Pass	
Chlorobenzene	%	98		70-130	Pass	
Chloroform	%	100		70-130	Pass	
Chloromethane	%	112		70-130	Pass	
cis-1.2-Dichloroethene	%	101		70-130	Pass	
cis-1.3-Dichloropropene	%	85		70-130	Pass	
Dibromochloromethane	%	93		70-130	Pass	
Dibromomethane	%	94		70-130	Pass	
Dichlorodifluoromethane	%	116		70-130	Pass	
Ethylbenzene	%	92		70-130	Pass	
lodomethane	%	84		70-130	Pass	
Isopropyl benzene (Cumene)	%	96		70-130	Pass	
m&p-Xylenes	%	94		70-130	Pass	
Methylene Chloride	%	99		70-130	Pass	
o-Xylene	%	93		70-130	Pass	
Styrene	%	93		70-130	Pass	
Tetrachloroethene	%	98		70-130	Pass	
Toluene	%	94		70-130	Pass	
trans-1.2-Dichloroethene	%	98		70-130	Pass	
trans-1.3-Dichloropropene	%	85		70-130	Pass	
Trichloroethene	%	98		70-130	Pass	
Trichlorofluoromethane	%	107		70-130	Pass	
Vinyl chloride	%	107		70-130	Pass	
LCS - % Recovery	/0	103		70-130	F 855	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	100		70-130	Pass	
Acenaphthylene	%	87		70-130	Pass	
	%	92				
Anthracene		1		70-130	Pass	
Benz(a)anthracene	%	71		70-130	Pass	
Benzo(a)pyrene	%	81		70-130	Pass	
Benzo(b&j)fluoranthene	%	78		70-130	Pass	
Benzo(g.h.i)perylene	%	99		70-130	Pass	
Benzo(k)fluoranthene	%	82		70-130	Pass	
Chrysene	%	88		70-130	Pass	
Dibenz(a.h)anthracene	%	92		70-130	Pass	
Fluoranthene	%	81		70-130	Pass	
Fluorene	%	74		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	89		70-130	Pass	
Naphthalene	%	80		70-130	Pass	
Phenanthrene	%	96		70-130	Pass	
Pyrene	%	125		70-130	Pass	
LCS - % Recovery		r				
Semivolatile Organic Compounds (SVOC)						
2-Chlorophenol	%	88		30-130	Pass	
4-Chloro-3-methylphenol	%	88		30-130	Pass	
Chlorpyrifos	%	84		70-130	Pass	
Demeton-S	%	86		70-130	Pass	

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Diazinon			%	89			70-130	Pass	
Dimethoate			%	83			70-130	Pass	
Disulfoton			%	82			70-130	Pass	
Fenitrothion			%	77			70-130	Pass	
Fenthion			%	91			70-130	Pass	
Methyl parathion			%	81			70-130	Pass	
N-Nitrosodipropylamine			%	100			70-130	Pass	
Pentachlorophenol			%	100			30-130	Pass	
Phenol			%	38			30-130	Pass	
Phorate			%	72			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	92			70-130	Pass	
Cadmium			%	94			70-130	Pass	
Chromium			%	90			70-130	Pass	
Copper			%	87			70-130	Pass	
Lead			%	85			70-130	Pass	
Mercury			%	93			70-130	Pass	
Nickel			%	83			70-130	Pass	
Zinc			%	95			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S15-My14536	NCP	%	92			70-130	Pass	
Cadmium	S15-My14536	NCP	%	95			70-130	Pass	
Chromium	S15-My14536	NCP	%	89			70-130	Pass	
Copper	S15-My14536	NCP	%	88			70-130	Pass	
Lead	S15-My14536	NCP	%	88			70-130	Pass	
Mercury	S15-My14536	NCP	%	95			70-130	Pass	
Nickel	S15-My14536	NCP	%	84			70-130	Pass	
Zinc	S15-My14536	NCP	%	95			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				İ	1		1		
Polycyclic Aromatic Hydrocarbon	S	1		Result 1	Result 2	RPD			
Acenaphthylene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S15-My09405	NCP	mg/L	0.0050	0.0050	10	30%	Pass	
Fluorene	S15-My09405	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
		NOR	···· ·· //	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S15-My09405	NCP	mg/L	< 0.001	< 0.001		0070	1 400	
Indeno(1.2.3-cd)pyrene Naphthalene	S15-My09405 S15-My09405	NCP NCP	mg/L mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S15-My14536	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cadmium	S15-My14536	NCP	mg/L	< 0.0005	< 0.0005	<1	30%	Pass	
Chromium	S15-My14536	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Copper	S15-My14536	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Lead	S15-My14536	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S15-My14536	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S15-My14536	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	S15-My14536	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference and is unquantifiable. A result of 1 has been reported for the purposes of providing a numerical result. Acceptance criteria were met for all other QC.

Authorised By

Charl Du Preez	Analytical Services Manager
Ivan Taylor	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Glenn Jackson National Laboratory Manager Pinel report - this Report segments any previously inserted Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067						Order No.: Report #: Phone: Fax:		29 Due: May 2 9406 1000 Priority: 2 Da	15, 2015 3:30 PM 19, 2015 ay iel Guille
Project Name: GEOTLCOV25397AA								Eurofins mgt Client	Manager: Charl Du Preez
Sample Detail						Eurofins mgt Suite 7	Volatile Organics		
	ere analysis is c		1074		-				
	oratory - NATA tory - NATA Site		+2/1		X	x	X		
	ratory - NATA Site								
External Laboratory									
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
MW1	May 14, 2015		Water	S15-My14400	Х	Х	Х		
MW2	May 14, 2015		Water	S15-My14401	Х	Х	Х		
MW4	May 14, 2015		Water	S15-My14402	Х	Х	Х		
DUP01	May 14, 2015		Water	S15-My14403	X	Х	Х		

ABN - 50 005 085 521 e.mail : Enviro

e.mail : EnviroSales@eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Coffey Geotechnics Pty Ltd Chatswood
Contact name:	-ALL INVOICES ENAURHODXXXXXX
Project name:	GEOTLCOV25397AA
COC number:	07662
Turn around time:	2 Day
Date/Time received:	May 15, 2015 3:30 PM
Eurofins mgt reference:	457829

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 16.5 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone : or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to -ALL INVOICES ENAURHODXXXXXX - Rajiv.Chauhan@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Geotechnics Pty Ltd Chatswood email address.

38 Years of Environmental Analysis & Experience

2	#45829	[Time: a		Sample Condition on Receipt						REFERENCED ON ALL SUBSEQUENT PAGES
No: 0766		114	Date: 15[5][S	10) (f. 5.0.							REFERE SUBSE
GEOTLEON 2539744 NO: 07662	Consigning Officer: Date Dispatched:	Courier Service: Consignment Note No:		Analyses Required	2005 14/100 1741,2403 1741,2403 1440 1440 1440						
SEO SEO	LEX Cucalwerd.		Received by:		H Z-					× 10	UHY>
Laboratory Quotation / Order No:	T	Project Manager: (report results to)	Tme: Racai / 7 1530.		Sample No.	51	201			(
Laborate	Sampled by:	Project (Date:		Sag	MW MW	200 200				Tumaround Required:
Chain of Custody		16.10T.	· JRVC		Container Type and Preservative	24,16,10	->				
	Mat	SAMPLE	ex Rudt	×	nteM slqme2	METALS WATER 21	->			tions:	
coffey 🎝	Dispatch lo: (Address & Phone No.)	Attention: SA	. Refinquished by:	-	Comments	Please Filme M				Special Laboratory Instructions:	Detection Limits:

Coples: WhiTE: Sign on release. YELLOW: If dispatched to interstate Lab, Lab to sign on receipt and fax back to Cafrey. BLUE: To be returned with results

Certificate of Analysis

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Daniel Guille

Report Project name Project ID Received Date **459907-W** SURRY HILLS SHOPPING CENTRE GEOTLCOV25397AA Jun 02, 2015

mgt

Client Sample ID			BH10/MW4	QC9	QC10
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S15-Jn01430	S15-Jn01431	S15-Jn01432
Date Sampled			Jun 02, 2015	Jun 02, 2015	Jun 02, 2015
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	0.02	mg/L	0.54	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	-
BTEX					
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	105	85	95
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.02	mg/L	< 0.02	< 0.02	-
TRH C6-C10	0.02	mg/L	0.54	< 0.02	-
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	0.54	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-
Halogenated Volatile Organics					
1.1-Dichloroethane	0.001	mg/L	< 0.001	-	-
1.1-Dichloroethene	0.001	mg/L	< 0.001	-	-
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	-	-
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	-	-
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	-	-
1.1.2.2-Tetrachloroethane	0.005	mg/L	< 0.005	-	-
1.2-Dibromoethane	0.001	mg/L	< 0.001	-	-
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	-	-
1.2-Dichloroethane	0.001	mg/L	< 0.001	-	-
1.2-Dichloropropane	0.001	mg/L	< 0.001	-	-
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	-	-
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	-	-
1.3-Dichloropropane	0.001	mg/L	< 0.001	-	-

Client Sample ID			BH10/MW4	QC9	QC10
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S15-Jn01430	S15-Jn01431	S15-Jn01432
Date Sampled			Jun 02, 2015	Jun 02, 2015	Jun 02, 2015
Test/Reference	LOR	Unit			
Halogenated Volatile Organics	Lon	Onit			
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	_	-
Bromodichloromethane	0.001	mg/L	< 0.001	_	-
Bromoform	0.001	mg/L	< 0.001	-	-
Bromomethane	0.001	mg/L	< 0.001	-	-
Carbon Tetrachloride	0.001	mg/L	< 0.001	-	-
Chlorobenzene	0.001	mg/L	< 0.001	-	-
Chloroform	0.005	mg/L	< 0.005	-	-
Chloromethane	0.001	mg/L	< 0.001	-	-
cis-1.2-Dichloroethene	0.001	mg/L	0.063	-	-
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	-	-
Dibromochloromethane	0.001	mg/L	< 0.001	-	-
Dibromomethane	0.005	mg/L	< 0.005	-	-
Iodomethane	0.001	mg/L	< 0.001	-	-
Methylene Chloride	0.001	mg/L	< 0.001	-	-
Tetrachloroethene	0.001	mg/L	0.29	-	-
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	-	-
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	-	-
Trichloroethene	0.001	mg/L	0.089	-	-
Trichlorofluoromethane	0.001	mg/L	< 0.001	-	-
Vinyl chloride	0.001	mg/L	< 0.001	-	-
Fluorobenzene (surr.)	1	%	76	-	-
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	-
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	-
Anthracene	0.001	mg/L	< 0.001	< 0.001	-
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	-
Chrysene	0.001	mg/L	< 0.001	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	-
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	-
Fluorene	0.001	mg/L	< 0.001	< 0.001	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	-
Naphthalene	0.001	mg/L	< 0.001	< 0.001	-
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	-
Pyrene	0.001	mg/L	< 0.001	< 0.001	-
Total PAH*	0.001	mg/L	< 0.001	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	122	128	-
p-Terphenyl-d14 (surr.)	1	%	73	71	-
Heavy Metals					
Arsenic (filtered)	0.001	mg/L	0.003	< 0.001	-
Cadmium (filtered)	0.0001	mg/L	0.0001	< 0.0001	-
Chromium (filtered)	0.001	mg/L	0.002	< 0.001	-
Copper (filtered)	0.001	mg/L	0.004	< 0.001	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-
Nickel (filtered)	0.001	mg/L	0.001	< 0.001	-
Zinc (filtered)	0.005	mg/L	0.016	< 0.005	-

mgt

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Jun 02, 2015	Holding Time 7 Day
- Method: TRH C6-C36 - LTM-ORG-2010 BTEX	Sydney	Jun 02, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 02, 2015	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Polycyclic Aromatic Hydrocarbons	Sydney	Jun 02, 2015	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH) Metals M8 filtered	Sydney	Jun 02, 2015	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS Halogenated Volatile Organics	Sydney	Jun 02, 2015	7 Day
- Method: E016 Volatile Halogenated Compounds (VHC)			

t

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Coffey Geotechnics Pty Ltd Chatswood Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067				R P	order eport hone ax:	t #:	459907 +61 2 9406 1000	Received: Due: Priority: Contact Name:	Jun 2, 2015 12:41 PM Jun 4, 2015 2 Day Daniel Guille		
Project Name: Project ID:		HILLS SHOPPIN OV25397AA	IG CENTRE							Eurofins mg	t Client Manager: Charl Du Pi
Sample Detail						BTEX	Eurofins mgt Suite 7 (filtered metals)	Halogenated Volatile Organics			
Laboratory where											
Melbourne Labor			271								
Sydney Laborato					X	Х	Х	Х			
Brisbane Laborat		te # 20794									
1	Sample Date	Sampling Time	Matrix	LAB ID							
BH10/MW4 J	un 02, 2015		Water	S15-Jn01430			Х	Х			
QC9 J	un 02, 2015		Water	S15-Jn01431			Х				
QC10 J	un 02, 2015		Water	S15-Jn01432	Х	Х					

mgt

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

TERMS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank			i i	•	
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank			1 1	1 4.00	
Halogenated Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.005	0.005	Pass	
1.2-Dibromoethane	mg/L	< 0.003	0.003	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromodorm	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride		< 0.001	0.001	Pass	
Chloroform	mg/L	1 1			
Chloromethane	mg/L	< 0.005	0.005	Pass	
	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.005	0.005	Pass	
Iodomethane	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
trans-1.3-Dichloropropene	mg/L	< 0.001		0.001	Pass	
Trichloroethene	mg/L	< 0.001		0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001		0.001	Pass	
Vinyl chloride	mg/L	< 0.001		0.001	Pass	
Method Blank		1	T		1	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank						
Heavy Metals						
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001		0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9	%	122		70-130	Pass	
TRH C10-C14	%	122		70-130	Pass	
LCS - % Recovery	70	104		70-130	F d S S	
BTEX						
Benzene	%	98		70-130	Pass	
Toluene	%	111		70-130	Pass	
Ethylbenzene	%	116		70-130	Pass	
m&p-Xylenes	%	122		70-130	Pass	
o-Xylene	%	122		70-130	Pass	
Xylenes - Total	%	124		70-130	Pass	
LCS - % Recovery	70	120		70-100	1 433	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	107		70-130	Pass	
TRH C6-C10	%	115		70-130	Pass	
TRH >C10-C16	%	109		70-130	Pass	
LCS - % Recovery	/0	100		10100	1 000	
Halogenated Volatile Organics						
1.1-Dichloroethane	%	102		75-125	Pass	
1.1-Dichloroethene	%	93		70-130	Pass	
1.1.1-Trichloroethane	%	97		70-130	Pass	
		. .				

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
1.1.2-Trichloroethane	%	104	70-130	Pass	
1.1.2.2-Tetrachloroethane	%	89	70-130	Pass	
1.2-Dibromoethane	%	101	70-130	Pass	
1.2-Dichlorobenzene	%	103	70-130	Pass	
1.2-Dichloroethane	%	99	70-130	Pass	
1.2-Dichloropropane	%	94	70-130	Pass	
1.2.3-Trichloropropane	%	101	70-130	Pass	
1.3-Dichlorobenzene	%	102	70-130	Pass	
1.3-Dichloropropane	%	97	70-130	Pass	
1.4-Dichlorobenzene	%	103	70-130	Pass	
Bromodichloromethane	%	98	70-130	Pass	
Bromoform	%	104	70-130	Pass	
Bromomethane	%	55	70-130	Fail	Q17
Carbon Tetrachloride	%	101	70-130	Pass	
Chlorobenzene	%	91	70-130	Pass	
Chloroform	%	98	70-130	Pass	
Chloromethane	%	102	70-130	Pass	
cis-1.2-Dichloroethene	%	99	70-130	Pass	
cis-1.3-Dichloropropene	%	87	70-130	Pass	
Dibromochloromethane	%	109	70-130	Pass	
Dibromomethane	%	102	70-130	Pass	
lodomethane	%	96	70-130	Pass	
Methylene Chloride	%	89	70-130	Pass	
Tetrachloroethene	%	108	70-130	Pass	
trans-1.2-Dichloroethene	%	101	70-130	Pass	
trans-1.3-Dichloropropene	%	87	70-130	Pass	
Trichloroethene	%	104	70-130	Pass	
Trichlorofluoromethane	%	123	70-130	Pass	
Vinyl chloride	%	73	70-130	Pass	
LCS - % Recovery Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	116	70-130	Pass	
Acenaphthylene	%	124	70-130	Pass	
Anthracene	%	93	70-130	Pass	
Benz(a)anthracene	%	81	70-130	Pass	
Benzo(a)pyrene	%	89	70-130	Pass	
Benzo(b&j)fluoranthene	%	89	70-130	Pass	
Benzo(g.h.i)perylene	%	104	70-130	Pass	
Benzo(k)fluoranthene	%	96	70-130	Pass	
Chrysene	%	102	70-130	Pass	
Dibenz(a.h)anthracene	%	101	70-130	Pass	
Fluoranthene	%	80	70-130	Pass	
Fluorene	%	129	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	98	70-130	Pass	
Naphthalene	%	72	70-130	Pass	
Phenanthrene	%	114	70-130	Pass	
Pyrene	%	86	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic (filtered)	%	101	70-130	Pass	
Cadmium (filtered)	%	108	70-130	Pass	
Chromium (filtered)	%	105	70-130	Pass	
Copper (filtered)	%	103	70-130	Pass	
Lead (filtered)	%	117	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Mercury (filtered)			%	109			70-130	Pass	
Nickel (filtered)			%	102			70-130	Pass	
Zinc (filtered)			%	109			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1		1		
Heavy Metals				Result 1					
Arsenic (filtered)	S15-Jn01431	CP	%	104			70-130	Pass	
Cadmium (filtered)	S15-Jn01431	CP	%	111			70-130	Pass	
Chromium (filtered)	S15-Jn01431	CP	%	105			70-130	Pass	
Copper (filtered)	S15-Jn01431	CP	%	103			70-130	Pass	
Lead (filtered)	S15-Jn01431	CP	%	101			70-130	Pass	
Mercury (filtered)	S15-Jn01431	CP	%	111			70-130	Pass	
Nickel (filtered)	S15-Jn01431	CP	%	103			70-130	Pass	
Zinc (filtered)	S15-Jn01431	CP	%	117			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1		T		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S15-Jn01430	CP	mg/L	0.003	0.003	7.0	30%	Pass	
Cadmium (filtered)	S15-Jn01430	CP	mg/L	0.0001	0.0001	<1	30%	Pass	
Chromium (filtered)	S15-Jn01430	CP	mg/L	0.002	0.002	2.0	30%	Pass	
Copper (filtered)	S15-Jn01430	CP	mg/L	0.004	0.004	1.0	30%	Pass	
Lead (filtered)	S15-Jn01430	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S15-Jn01430	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S15-Jn01430	CP	mg/L	0.001	0.001	<1	30%	Pass	
Zinc (filtered)	S15-Jn01430	CP	mg/L	0.016	0.016	<1	30%	Pass	

mgt

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
017	LCC Descuery subside of eccentance establish because eccentable recoveries were obtained for other compounds in this group

Q17 LCS Recovery outside of acceptance criteria however acceptable recoveries were obtained for other compounds in this group

Authorised By

Charl Du Preez	Analytical Services Manager
Ivan Taylor	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

li fil

Glenn Jackson National Laboratory Manager Minel report - this Report supposes any presidently income Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

mgt

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name	: Coffey G	eotechnics Pty L	td Chatswood			o	rder	No.:		Received:	Jun 2, 2015 12:41 PM
Address:	Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067			Р	epor hone ax:		459907 +61 2 9406 1000 +61 2 9406 1002	Due: Priority: Contact Name:	Jun 4, 2015 2 Day Daniel Guille		
Project Name:SURRY HILLS SHOPPING CENTREProject ID:GEOTLCOV25397AA										Eurofina I ma	t Client Manager: Charl Du Pi
					Ŧ	œ	Ш	Т		Luronna mg	
		Sample Detail			TRH C6-C9	BTEX	Eurofins mgt Suite 7 (filtered metals)	Halogenated Volatile Organics			
Laboratory where	analysis is c	onducted									
Melbourne Labora			271								
Sydney Laborato					X	X	Х	Х			
Brisbane Laborat		te # 20794									
External Laborato											
Sample ID S	Sample Date	Sampling Time	Matrix	LAB ID							
BH10/MW4 Ju	un 02, 2015		Water	S15-Jn01430			Х	Х			
QC9 Ji	un 02, 2015		Water	S15-Jn01431			Х				
QC10 Ju	un 02, 2015		Water	S15-Jn01432	X	X					

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Coffey Geotechnics Pty Ltd Chatswood
Contact name:	Daniel Guille
Project name:	SURRY HILLS SHOPPING CENTRE
Project ID:	GEOTLCOV25397AA
COC number:	0851
Turn around time:	2 Day
Date/Time received:	Jun 2, 2015 12:41 PM
Eurofins mgt reference:	459907

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 11.1 degrees Celsius.
- \checkmark All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- \checkmark All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \boxtimes Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Metals filtered from amber containers supplied | Sample QC8 forwarded to ALS as requested

Contact notes

If you have any questions with respect to these samples please contact:

Charl Du Preez on Phone : or by e.mail: charldupreez@eurofins.com.au

Results will be delivered electronically via e.mail to Daniel Guille - daniel.guille@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Geotechnics Pty Ltd Chatswood email address.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation NATA ACCreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

			CHAI	N-OF-CL	ISTODY AN	D ANALY	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	Page -	of	0851
		Consign	Consigning Office:	Corten	CHONSINH)					
8	coffey	Report Resu Invoices to:	Report Results to: ひっん ぐ L Invoices to:	Dan EL	Guire é		Mobile: 045065263 Phone:	Email: doniel . guille	112	@caffey.com @coffey.com
Project	Project No: (6072 LUV25397 AD Task No:							Analysis Request Section		
Project	4 Ac. G		EUROFIN .				11	111111		
Sampler Special I	Sampler's Name: Maria CH-1 Project Manager: D HIGL	Project Manager: D. W. C.	DUC	Guile			1	1/1/100		
Relevant	agreements' Eurofins COF_ENAUABI F00952AA_MSA1 : ALS	S COF ENAUA	BTF00952AA	MSA2 and SG	IS COF_ENAUABTF0	0952AA_MSA3	11	1124131	1	
Lab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	& T-A-T (specify)	E St CT CO CA	the start	Z	NOTES
	BHID MWH	2/8/12	2/6/13	Wetel	16410+11	424		XX	the mut	~ 1. ~ 1.
	0, 00	1	-	-	_	-		XX	QC8-Non	on ward to
	019	_	_	-	7			×	7	ALS.
	0(10	>	*	*	2	>		×		
										Î
									-02-JUN2	02_JUN2015_12:41-
		-	-							
					Ÿ	KELEIVEU BY		Sample Receipt Advice: (Lab Use Only)	e Only)	Ĩ
Name: . Coffey El	Name: 1910 Nov N Ren Date: 2/6/15. Coffey Environments J Time:		Name: Company:	N.	A siz	1	Date: Time:	All Samples Recieved in Good Condition All Documentation is in Perner Order	ndition	
Name:			Mame:	1 Per			Date: 020 Lal 5	Samples Bereived Properly Chilled		
Company:			Company:	W: EPIng	+		Time: 12:41	Lab. Ref/Batch No.	2	,
*Contali 5 - Sulp	*Container Type & Preservation Codes: P - Elastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - N S - Sulphuric Acid Preservat. J - Ice. 51 - Sodium Thiosulfate. NP - No Preservative. OP - Other Preservative	ottle, J - Glasi NP - No Pres	s Jar, V-Via	l, Z - Ziplock B: * - Other Prese	ag, N - Nitric Acid P ervative	reserved, C - H	. N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, stive	V5 99 7	.106	
Coffe	Coffey Environments				Version: 5	5			Issue Dat	Issue Date: 11/08/2014

Issue Date: 11/08/2014

	QA/QC Compliance	Assessment for DQC	D Reporting	
Work Order	: ES1523243	Page	: 1 of 4	
Client		Laboratory	: Environmental Division Sydney	
Contact	: MR DANIEL GUILLE	Telephone	: +61-2-8784 8555	
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE	Date Samples Received	: 03-Jun-2015	
Site	:	Issue Date	: 05-Jun-2015	
Sampler	:	No. of samples received	: 1	
Order number	:	No. of samples analysed	:1	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	ount	Rat	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	3	0.00	10.00	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	0	3	0.00	10.00	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	3	0.00	5.00	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	0	3	0.00	5.00	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unspecified (EG020A-T) QC8	02-Jun-2015	04-Jun-2015	29-Nov-2015	1	04-Jun-2015	29-Nov-2015	~
EG035T: Total Recoverable Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Unspecified (EG035T) QC8	02-Jun-2015				04-Jun-2015	30-Jun-2015	~
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) QC8	02-Jun-2015	04-Jun-2015	09-Jun-2015	1	05-Jun-2015	14-Jul-2015	~
EP074A: Monocyclic Aromatic Hydrocarbons							
Amber VOC Vial - Sulfuric Acid (EP074) QC8	02-Jun-2015	04-Jun-2015	16-Jun-2015	1	04-Jun-2015	16-Jun-2015	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) QC8	02-Jun-2015	04-Jun-2015	09-Jun-2015	~	04-Jun-2015	14-Jul-2015	~
EP080/071: Total Petroleum Hydrocarbons							
Amber VOC Vial - Sulfuric Acid (EP080) QC8	02-Jun-2015	04-Jun-2015	16-Jun-2015	1	04-Jun-2015	16-Jun-2015	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specificatio
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	10.00	x	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	2	50.00	10.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	15	13.33	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	0	3	0.00	10.00	x	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	2	17	11.76	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	2	50.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	3	33.33	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	20	5.00	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	2	50.00	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	3	33.33	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	20	5.00	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	5.00	×	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	2	50.00	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	0	3	0.00	5.00	x	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	20	5.00	5.00	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

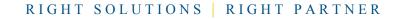
Analytical Methods	Method	Matrix	Method Descriptions
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Volatile Organic Compounds	EP074	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)

QUALITY CONTROL REPORT

Work Order	: ES1523243	Page	: 1 of 10
Client		Laboratory	: Environmental Division Sydney
Contact	: MR DANIEL GUILLE	Contact	:
Address	:	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: daniel.guille@coffey.com	E-mail	
Telephone	:	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 03-Jun-2015
C-O-C number	: 0851	Date Analysis Commenced	: 04-Jun-2015
Sampler	:	Issue Date	: 05-Jun-2015
Site	:	No. of samples received	:1
Quote number	:	No. of samples analysed	:1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:


- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with	Pabi Subba	Senior Organic Chemist	Sydney Organics
ISO/IEC 17025.	Shobhna Chandra	Metals Coordinator	Sydney Inorganics

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EG020T: Total Metal	Is by ICP-MS (QC Lot:	117233)							
ES1522885-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.005	0.006	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.012	0.013	8.48	No Limit
ES1523236-009	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.005	0.005	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	< 0.005	<0.005	0.00	No Limit
EG035T: Total Reco	overable Mercury by Fl	MS (QC Lot: 117713)							
ES1523243-001	QC8	EG035T: Mercury	7439-97-6	0.0001	mg/L	0.0007	0.0007	0.00	No Limit
EP074D: Fumigants	(QC Lot: 118054)								
EP074D: Fumigants (QC Lot: 11) ES1523243-001 QC8		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	5	μg/L	<5	<5	0.00	No Limit
			EP074: 2.2-Dichloropropane	594-20-7	5	μg/L	<5	<5	0.00
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	μg/L	<5	<5	0.00	No Limit
ES1523263-006	Anonymous	EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	μg/L	<5	<5	0.00	No Limit
	5	EP074: 1.2-Dichloropropane	78-87-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: 2.2-Dichloropropane	594-20-7	5	μg/L	<5	<5	0.00	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	μg/L	<5	<5	0.00	No Limit
P074E: Halogenate	ed Aliphatic Compound								
ES1523243-001	QC8	EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	0.00	No Limit
	400	EP074: 1.1.1-Trichloroethane	71-55-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloroethene	75-35-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	μg/L	<5	<5	0.00	No Limit

Page	: 4 of 10
Work Order	ES1523243
Client	: COFFEY GEOTECHNICS
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER			[Laboratory	Duplicate (DUP) Report	:	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP074E: Halogenate	d Aliphatic Compound	ls (QC Lot: 118054) - continued							
ES1523243-001	QC8	EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	0.00	No Limit
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	54	51	4.28	0% - 50%
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Iodomethane	74-88-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Pentachloroethane	76-01-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: Tetrachloroethene	127-18-4	5	µg/L	234	235	0.00	0% - 20%
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: Trichloroethene	79-01-6	5	µg/L	69	67	2.18	0% - 50%
		EP074: Bromomethane	74-83-9	50	µg/L	<50	<50	0.00	No Limit
	EP074: Chloroethane	75-00-3	50	µg/L	<50	<50	0.00	No Limit	
	EP074: Chloromethane	74-87-3	50	µg/L	<50	<50	0.00	No Limit	
	EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	0.00	No Limit	
		EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	0.00	No Limit
		EP074: Vinyl chloride	75-01-4	50	µg/L	<50	<50	0.00	No Limit
ES1523263-006	Anonymous	EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	0.00	No Limit
		EP074: Carbon Tetrachloride	56-23-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	0.00	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: lodomethane	74-88-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Pentachloroethane	76-01-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.00	No Limit

Page	: 5 of 10
Work Order	: ES1523243
Client	: COFFEY GEOTECHNICS
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER			[Laboratory	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP074E: Halogenate	ed Aliphatic Compour	nds (QC Lot: 118054) - continued							
ES1523263-006	Anonymous	EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromomethane	74-83-9	50	µg/L	<50	<50	0.00	No Limit
		EP074: Chloroethane	75-00-3	50	µg/L	<50	<50	0.00	No Limit
		EP074: Chloromethane	74-87-3	50	µg/L	<50	<50	0.00	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	0.00	No Limit
		EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	0.00	No Limit
		EP074: Vinyl chloride	75-01-4	50	µg/L	<50	<50	0.00	No Limit
EP074F: Halogenate	d Aromatic Compour	nds (QC Lot: 118054)							
ES1523243-001	QC8	EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	μg/L	<5	<5	0.00	No Limit
	EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	0.00	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromobenzene	108-86-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.00	No Limit
ES1523263-006	Anonymous	EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	0.00	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromobenzene	108-86-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.00	No Limit
EP074G: Trihalomet	hanes (QC Lot: 1180	54)							
ES1523243-001	QC8	EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.00	No Limit
		EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.00	No Limit
ES1523263-006	Anonymous	EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.00	No Limit
		EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.00	No Limit
EP080/071: Tot <u>al Pe</u>	troleum Hydrocarbon	is (QC Lot: 118055)							
ES1523243-001	QC8	EP080: C6 - C9 Fraction		20	µg/L	370	360	4.31	0% - 50%
ES1523263-006	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
		ons - NEPM 2013 Fractions (QC Lot: 118055)							
ES1523243-001	QC8	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	370	360	4.24	0% - 50%
L01020240-001	200		010	20	μy/L	510	300	4.24	070-3070

Page	: 6 of 10
Work Order	: ES1523243
Client	: COFFEY GEOTECHNICS
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 118055) - continued							
ES1523263-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	Lot: 118055)								
ES1523243-001	QC8	EP080: Benzene	71-43-2	1	µg/L	1	1	0.00	No Limit
	EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit	
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit
ES1523263-006	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
		106-42-3							
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020T: Total Metals by ICP-MS (QCLot: 117233)									
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.5	79	121	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.5	83	113	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.0	84	116	
G020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	90.6	83	117	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	89.5	84	116	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	92.0	84	116	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	91.6	77	117	
EG035T: Total Recoverable Mercury by FIMS (QCLo	:: 117713)								
G035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	89.7	77	115	
P074D: Fumigants (QCLot: 118054)									
EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	10 µg/L	89.9	69	117	
P074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	10 µg/L	86.3	76	120	
P074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	10 µg/L	87.1	61	119	
P074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	10 µg/L	79.5	62	120	
P074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	10 µg/L	79.9	61	119	
EP074E: Halogenated Aliphatic Compounds (QCLot:	118054)								
P074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	10 µg/L	85.2	66	114	
P074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	10 µg/L	83.9	61	119	
EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	10 µg/L	87.2	70	124	
P074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	10 µg/L	88.4	75	123	
EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	10 µg/L	87.6	75	119	
EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	10 µg/L	96.3	69	123	
EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	10 µg/L	84.6	73	119	
P074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	10 µg/L	88.3	74	128	
P074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	10 µg/L	83.2	66	136	
P074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	10 µg/L	93.2	78	122	
P074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	10 µg/L	91.9	79	121	
P074: Bromomethane	74-83-9	50	µg/L	<50	100 µg/L	106	56	140	
EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	10 µg/L	83.5	63	121	
EP074: Chloroethane	75-00-3	50	µg/L	<50	100 µg/L	95.1	63	135	
EP074: Chloromethane	74-87-3	50	µg/L	<50	100 µg/L	102	67	130	
EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	10 µg/L	87.1	77	117	
EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	10 µg/L	72.8	71	128	
EP074: Dibromomethane	74-95-3	5	µg/L	<5	10 µg/L	84.3	74	118	

Page	: 8 of 10
Work Order	: ES1523243
Client	: COFFEY GEOTECHNICS
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074E: Halogenated Aliphatic Compounds (QCLo	ot: 118054) - continued							
EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	100 µg/L	132	61	138
EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	10 µg/L	99.3	58	132
EP074: lodomethane	74-88-4	5	µg/L	<5	10 µg/L	97.1	70	128
EP074: Pentachloroethane	76-01-7	5	µg/L	<5	10 µg/L	103	72	126
EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	10 µg/L	75.4	72	124
EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	10 µg/L	96.7	71	119
EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	10 µg/L	71.5	60	120
EP074: Trichloroethene	79-01-6	5	µg/L	<5	10 µg/L	87.7	74	120
EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	100 µg/L	96.7	65	131
EP074: Vinyl chloride	75-01-4	50	µg/L	<50	100 µg/L	99.7	69	129
EP074F: Halogenated Aromatic Compounds (QCL	ot: 118054)							
EP074: 1.2.3-Trichlorobenzene	87-61-6	5	μg/L	<5	10 µg/L	90.5	67	125
EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	10 µg/L	92.1	60	126
EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	10 µg/L	91.8	77	117
EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	10 µg/L	89.8	74	120
EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	10 µg/L	95.0	72	120
EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	10 µg/L	93.7	71	121
EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	10 µg/L	93.8	71	121
EP074: Bromobenzene	108-86-1	5	µg/L	<5	10 µg/L	91.3	76	116
EP074: Chlorobenzene	108-90-7	5	µg/L	<5	10 µg/L	94.5	80	118
EP074G: Trihalomethanes (QCLot: 118054)								
EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	10 µg/L	84.7	64	118
EP074: Bromoform	75-25-2	5	µg/L	<5	10 µg/L	83.8	74	126
EP074: Chloroform	67-66-3	5	µg/L	<5	10 µg/L	87.1	76	118
EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	10 µg/L	78.2	65	115
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 116953)							
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	85.2	62	113
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	94.4	64	114
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	66.8	64	116
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	94.0	64	117
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	97.4	63	117
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	93.1	62	119
	205-82-3							
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 µg/L	102	59	118
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 µg/L	105	62	117
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 µg/L	97.5	63	116
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 µg/L	105	61	117
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 µg/L	73.8	64	118
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	89.4	64	115

Page	: 9 of 10
Work Order	: ES1523243
Client	: COFFEY GEOTECHNICS
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 116953) - co	ntinued						
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 µg/L	105	60	118
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 µg/L	77.5	59	119
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 µg/L	67.2	63	116
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	70.2	63	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 1169	51)							
EP071: C10 - C14 Fraction		50	μg/L	<50	2000 µg/L	92.6	59	129
EP071: C15 - C28 Fraction		100	μg/L	<100	3000 µg/L	95.2	71	131
EP071: C29 - C36 Fraction		50	µg/L	<50	2000 µg/L	96.8	62	120
EP080/071: Total Petroleum Hydrocarbons (QCLot: 1180	55)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 µg/L	86.1	75	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 116951)						
EP071: >C10 - C16 Fraction	>C10_C16	100	μg/L	<100	2500 μg/L	90.7	59	131
EP071: >C16 - C34 Fraction		100	μg/L	<100	3500 µg/L	90.3	74	138
EP071: >C34 - C40 Fraction		100	μg/L	<100	1500 µg/L	101	67	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 118055)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 µg/L	87.3	75	127
EP080: BTEXN (QCLot: 118055)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	88.3	70	124
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	83.2	70	120
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 µg/L	83.5	69	121
	106-42-3							
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	98.4	70	124
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 µg/L	87.5	72	122
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	86.9	65	129

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG020T: Total Meta	als by ICP-MS (QCLot: 117233)								
ES1523020-002	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	102	70	130		
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	105	70	130		
		EG020A-T: Chromium	7440-47-3	1 mg/L	108	70	130		
		EG020A-T: Copper	7440-50-8	1 mg/L	102	70	130		
		EG020A-T: Lead	7439-92-1	1 mg/L	103	70	130		

Page	: 10 of 10
Work Order	: ES1523243
Client	: COFFEY GEOTECHNICS
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG020T: Total Met	als by ICP-MS (QCLot: 117233) - continued								
ES1523020-002	Anonymous	EG020A-T: Nickel	7440-02-0	1 mg/L	98.5	70	130		
		EG020A-T: Zinc	7440-66-6	1 mg/L	105	70	130		
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 117713)								
ES1523237-001	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	77.4	70	130		
EP074E: Halogena	ted Aliphatic Compounds (QCLot: 118054)								
ES1523243-001	QC8	EP074: 1.1-Dichloroethene	75-35-4	25 µg/L	111	70	130		
		EP074: Trichloroethene	79-01-6	25 µg/L	109	70	130		
EP074F: Halogena	ted Aromatic Compounds (QCLot: 118054)								
ES1523243-001	QC8	EP074: Chlorobenzene	108-90-7	25 µg/L	88.8	70	130		
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 118055)								
ES1523243-001	QC8	EP080: C6 - C9 Fraction		325 µg/L	106	70	130		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fraction	ns (QCLot: 118055)							
ES1523243-001	QC8	EP080: C6 - C10 Fraction	C6_C10	375 µg/L	105	70	130		
EP080: BTEXN (Q	CLot: 118055)								
ES1523243-001	QC8	EP080: Benzene	71-43-2	25 µg/L	80.4	70	130		
		EP080: Ethylbenzene	100-41-4	25 µg/L	82.9	70	130		
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	84.1	70	130		
			106-42-3						
		EP080: Naphthalene	91-20-3	25 µg/L	101	70	130		
		EP080: ortho-Xylene	95-47-6	25 µg/L	87.2	70	130		
		EP080: Toluene	108-88-3	25 µg/L	87.4	70	130		

CERTIFICATE OF ANALYSIS

Work Order	ES1523243	Page	: 1 of 6
Client		Laboratory	Environmental Division Sydney
Contact	: MR DANIEL GUILLE	Contact	
Address	:	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: daniel.guille@coffey.com	E-mail	:
Telephone	:	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: GEOTLCOV25397AA SURRY HILLS VILLAGE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 03-Jun-2015 13:00
C-O-C number	: 0851	Date Analysis Commenced	: 04-Jun-2015
Sampler	:	Issue Date	: 05-Jun-2015 17:22
Site	:		
		No. of samples received	:1
Quote number	:	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

~	NATA Accredited Laboratory 825			natories indicated below. Electronic signing has b	been			
NATA	Accredited for compliance with	carried out in compliance with p	carried out in compliance with procedures specified in 21 CFR Part 11.					
	ISO/IEC 17025.	Signatories	Position	Accreditation Category				
		Pabi Subba	Senior Organic Chemist	Sydney Organics				
		Shobhna Chandra	Metals Coordinator	Sydney Inorganics				
WORLD RECOGNISED								

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
- EG035: Positive Hg results have been confirmed by reanalysis.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC8				
	Cl	ient samplii	ng date / time	[02-Jun-2015]				
Compound	CAS Number	LOR	Unit	ES1523243-001				
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.009				
Cadmium	7440-43-9	0.0001	mg/L	0.0007				
Chromium	7440-47-3	0.001	mg/L	0.035				
Copper	7440-50-8	0.001	mg/L	0.029				
Lead	7439-92-1	0.001	mg/L	0.213				
Nickel	7440-02-0	0.001	mg/L	0.008				
Zinc	7440-66-6	0.005	mg/L	0.468				
EG035T: Total Recoverable Mercur	ry by FIMS							
Mercury	7439-97-6	0.0001	mg/L	0.0007				
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5				
1.2-Dichloropropane	78-87-5	5	μg/L	<5				
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5				
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5				
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5				
EP074E: Halogenated Aliphatic Cor	npounds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50				
Chloromethane	74-87-3	50	µg/L	<50				
Vinyl chloride	75-01-4	50	µg/L	<50				
Bromomethane	74-83-9	50	µg/L	<50				
Chloroethane	75-00-3	50	µg/L	<50				
Trichlorofluoromethane	75-69-4	50	µg/L	<50				
1.1-Dichloroethene	75-35-4	5	µg/L	<5				
lodomethane	74-88-4	5	µg/L	<5				
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5				
1.1-Dichloroethane	75-34-3	5	µg/L	<5				
cis-1.2-Dichloroethene	156-59-2	5	µg/L	54				
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5				
1.1-Dichloropropylene	563-58-6	5	µg/L	<5				
Carbon Tetrachloride	56-23-5	5	µg/L	<5				
1.2-Dichloroethane	107-06-2	5	µg/L	<5				
Trichloroethene	79-01-6	5	µg/L	69				
Dibromomethane	74-95-3	5	µg/L	<5				
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5				
1.3-Dichloropropane	142-28-9	5	µg/L	<5				

Page : 4 of 6 Work Order : ES1523243 Client : COFFEY GEOTECHNICS Project : GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER (Matrix: WATER)		Clie	nt sample ID	QC8				
	Clier	nt samplin	g date / time	[02-Jun-2015]				
Compound	CAS Number	LOR	Unit	ES1523243-001				
				Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Com	pounds - Continued							
Tetrachloroethene	127-18-4	5	µg/L	234				
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5				
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5				
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5				
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5				
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5				
Pentachloroethane	76-01-7	5	µg/L	<5				
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5				
Hexachlorobutadiene	87-68-3	5	µg/L	<5				
EP074F: Halogenated Aromatic Com	pounds							
Chlorobenzene	108-90-7	5	μg/L	<5				
Bromobenzene	108-86-1	5	µg/L	<5				
2-Chlorotoluene	95-49-8	5	µg/L	<5				
4-Chlorotoluene	106-43-4	5	µg/L	<5				
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5				
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5				
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5				
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5				
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5				
EP074G: Trihalomethanes								
Chloroform	67-66-3	5	µg/L	<5				
Bromodichloromethane	75-27-4	5	µg/L	<5				
Dibromochloromethane	124-48-1	5	µg/L	<5				
Bromoform	75-25-2	5	µg/L	<5				
EP075(SIM)B: Polynuclear Aromatic	Hvdrocarbons							
Naphthalene	91-20-3	1	µg/L	<1.0				
Acenaphthylene	208-96-8	1	µg/L	<1.0				
Acenaphthene	83-32-9	1	µg/L	<1.0				
Fluorene	86-73-7	1	μg/L	<1.0				
Phenanthrene	85-01-8	1	μg/L	<1.0				
Anthracene	120-12-7	1	µg/L	<1.0				
Fluoranthene	206-44-0	1	μg/L	<1.0				
Pyrene	129-00-0	1	µg/L	<1.0				
Benz(a)anthracene	56-55-3	1	µg/L	<1.0				
Chrysene	218-01-9	1	µg/L	<1.0				

Page : 5 of 6 Work Order : ES1523243 Client : COFFEY GEOTECHNICS Project : GEOTLCOV25397AA SURRY HILLS VILLAGE

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC8				
	Cl	ient sampli	ng date / time	[02-Jun-2015]				
Compound	CAS Number	LOR	Unit	ES1523243-001				
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hvdrocarbons - Con	tinued						
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	µg/L	<1.0				
Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0				
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0				
Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0				
Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0				
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	µg/L	<0.5				
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5				
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		20	µg/L	370				
C10 - C14 Fraction		50	μg/L	<50				
C15 - C28 Fraction		100	μg/L	<100				
C29 - C36 Fraction		50	μg/L	<50				
^ C10 - C36 Fraction (sum)		50	μg/L	<50				
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fractio						
C6 - C10 Fraction	C6_C10	20	µg/L	370				
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	370				
(F1)			10					
>C10 - C16 Fraction	>C10_C16	100	µg/L	<100				
>C16 - C34 Fraction		100	µg/L	<100				
>C34 - C40 Fraction		100	µg/L	<100				
^ >C10 - C40 Fraction (sum)		100	µg/L	<100				
^ >C10 - C16 Fraction minus Naphthalen	ie	100	µg/L	<100				
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	1				
Toluene	108-88-3	2	µg/L	<2				
Ethylbenzene	100-41-4	2	µg/L	<2				
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2				
ortho-Xylene	95-47-6	2	µg/L	<2				
^ Total Xylenes	1330-20-7	2	µg/L	<2				
^ Sum of BTEX		1	µg/L	1				
Naphthalene	91-20-3	5	µg/L	<5				
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	5	%	99.2				
	11000-01-0	-			1	1	1	L

Sub-Matrix: WATER (Matrix: WATER)		Cli	ient sample ID	QC8				
	Cli	ent sampl	ing date / time	[02-Jun-2015]				
Compound	CAS Number	LOR	Unit	ES1523243-001				
				Result	Result	Result	Result	Result
EP074S: VOC Surrogates - Continue	ed							
Toluene-D8	2037-26-5	5	%	106				
4-Bromofluorobenzene	460-00-4	5	%	92.6				
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	1	%	24.6				
2-Chlorophenol-D4	93951-73-6	1	%	54.2				
2.4.6-Tribromophenol	118-79-6	1	%	55.4				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1	%	62.0				
Anthracene-d10	1719-06-8	1	%	52.0				
4-Terphenyl-d14	1718-51-0	1	%	65.6				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	97.0				
Toluene-D8	2037-26-5	2	%	101				
4-Bromofluorobenzene	460-00-4	2	%	90.1				

	СНА	CHAIN-OF-CUS	STODY AND ANALYSIS REQUEST	IALYSIS R	EQUEST			Pageof	0851
	Consigning Office:	Coreen	COONSIVH)		1. 1.				
coffev •	Report Results to: Day J & L	Daviet	Guires	Mobile:	0450655263	263	Email: deniel	21.94112	@coffey.com
60.000	Invoices to:			Phone:	••	3	Email:		@coffey.com
Project No: CEOTLCOV25397AD Task No:						Analysis	Analysis Request Section	ç	
Project Name: Sur Row Hund Uner Laboratory:	EUROPINS.						111	11111	
Sampler's Name: Mawa Actu Project Man	50	Guillé				/		100	
Special Instructions: Place Powerd OCS In Incs Relevant agreements: Eurofins COF_ENUABTF00952AA MSA1;ALS COF_ENAUABTF00952AA MSA3	B PUBTF00952A	A MSA2 and SG	S COF ENAUABTF00952AA		\sum	$\langle \rangle$	Ż		
Lab No. Sample ID	Sample Date Time	Matrix (Soiletc)	Container Type & T	134	No.	Ser Ser	No al	2	NOTES
2H10 / MW 4	2/6/15 2/6/15	Weter	16+1P+1V 43	484.			XX	Filter Ne	Webals
1 008/	1 1	1					XX	-	Aforward to
QC9			7		62			7	ALS.
0610	1 1	×	ر اک	V .			×		
	-					• ••••			
								Environmental Division	tal Division
				-				Work Order Reference	<i>ney</i> Reference
								ES1523	3243
									01-10
			-			_			
				-					
								Telephone : +61-2-8784 8555	2-8784 8555
RELINQUISHED BY			RECEIVED BY	0.BY		- Si	ample Receipt Ad	Sample Receipt Advice: (Lab Use Only)	
Name: RANNA Rear Date: 2/6/15	Jame.		1	Date.		<	II Samplac Paciave	All Samulas Baciavad in Good Condition	Ċ
0	, amo	and the second s	X alt	Timo.					
	-	LI.	-10-10			ł	All Documentation is in Proper Urger	s in Proper Urger	2
20110	Name:	51	- 1-	Date: D4	010/012	<u>Š</u>	Samples Received Properly Chilled	roperty Chilled	
Company: CH_M(MT Time:	Company:	IN: EV-MOT	ł	Time:	14:21		Lab. Ref/Batch No.		
*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Viaf, Z - Ziplock Bag, N - N 5 - Subhuric Acid Preservative 5T - Sodium Thinsulfate NP - No Preservative OP - Other Preservative	tle, J - Glass Jar, V- Vi	al, Z - Ziplock Ba	ig, N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, ruative	ed, C - Hydrochio	ric Acid Preserv	ed,			
Coffey Environments			Version: 5	REAL	Prs 3	16/15/	1300	Issue D	lssue Date: 11/08/2014

GOWARS PRINTING (20) 9765 3545

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EN1511654				
Client Contact Address	: COFFEY GEOTECHNICS : MR DANIEL GUILLE :	Contact: Peter KeAddress: 5/585 Ma	nental Division Newcastle yte aitland Road Mayfield West stralia 2304		
E-mail Telephone Facsimile	: daniel.guille@coffey.com : :	E-mail: peter.keyTelephone: +61 2 40Facsimile: +61 2 49			
Project	EGEOTLCOV25397AA SURRY HILSS	Page : 1 of 2			
Order number	:	Quote number :			
C-O-C number	: 0353	QC Level : NEPM QCS3 re	013 Schedule B(3) and ALS uirement		
Site	:				
Sampler	:				
Dates Date Samples Receive Client Requested Due Date		Issue Date Scheduled Reporting Date	: 19-May-2015 : 20-May-2015		
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	S : Carrier : :	Security Seal Temperature No. of samples received / analysec	: Not Available : : 5 / 5		

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package

tasks, that are included the second s	uded in the package.		AIR - CAN-SG1 Canister Sampling - Soil Gas Field Data	SG-V2-PH ias - BTEXN + NEPM TPH + Chlo
Laboratory sample ID	Client sampling date / time	Client sample ID	AIR - C/ Canister	AIR - SG Soil Gas
EN1511654-001	[15-May-2015]	#9678 C0708		✓
EN1511654-002	[15-May-2015]	#9680 C0710		✓
EN1511654-003	[15-May-2015]	Unused C1079	1	
EN1511654-004	[15-May-2015]	Unused C0728	✓	
EN1511654-005	[15-May-2015]	Unused C1117	1	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

DANIEL GUILLE

- *AU Certificate of Analysis - NATA (COA)	Email	daniel.guille@coffey.con
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	daniel.guille@coffey.con
- *AU QC Report - DEFAULT (Anon QC Rep) - USEPA (QC-USEPA)	Email	daniel.guille@coffey.con
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	daniel.guille@coffey.con
- A4 - AU Tax Invoice (INV)	Email	daniel.guille@coffey.con
- Chain of Custody (CoC) (COC)	Email	daniel.guille@coffey.con
- EDI Format - ENMRG (ENMRG)	Email	daniel.guille@coffey.con
- EDI Format - ESDAT (ESDAT)	Email	daniel.guille@coffey.con

- EDI Format - XTab (XTAB)

Email

prinated

om om om om om om om m daniel.guille@coffey.com

QA/QC Compliance Assessment for DQO Reporting : EN1511654 Work Order Page : 1 of 4 : Environmental Division Newcastle Client : COFFEY GEOTECHNICS Laboratory Contact : MR DANIEL GUILLE Telephone :+61 2 4014 2500 : GEOTLCOV25397AA SURRY HILSS VILLAGE **Date Samples Received** Project : 18-May-2015 Site Issue Date : 21-May-2015 · ____ No. of samples received : 5 Sampler : -----Order number No. of samples analysed : 5 : -----

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR					Evaluation	n: 🗴 = Holding time	e breach ; ✓ = Withi	in holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101/EP103: Sampling Conditions								
Gas Canister - ALS Stainless Steel Silonite¿ (CAN-	001)							
#9678 - C0708,	#9680 - C0710,	15-May-2015				21-May-2015	14-May-2016	✓
Unused - C1079,	Unused - C0728,							
Unused - C1117								
EP101: VOCs by USEPA Method TO15r								
Gas Canister - ALS Stainless Steel Silonite¿ (EP10	1-15X)							
#9678 - C0708,	#9680 - C0710	15-May-2015				21-May-2015	14-Jun-2015	\checkmark
EP103: Total Recoverable Hydrocarbons - NEPM 2	2013							
Gas Canister - ALS Stainless Steel Silonite¿ (EP10	3-PC)							
#9678 - C0708,	#9680 - C0710	15-May-2015				21-May-2015	14-Jun-2015	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR				Evaluatio	n: 🗴 = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specificatio
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Duplicate Control Samples (DCS)							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	2	50.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile TPH/TRH in Gaseous Samples	EP103-PC	1	2	50.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Duplicates (DUP)							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	2	50.00	10.00	\checkmark	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile TPH/TRH in Gaseous Samples	EP103-PC	1	2	50.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	2	50.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile TPH/TRH in Gaseous Samples	EP103-PC	1	2	50.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	2	50.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Volatile TPH/TRH in Gaseous Samples	EP103-PC	1	2	50.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Extended Suite
VOCs in Air by USEPA TO15r - Extended Suite (mass/volume)	EP101-15X-MV	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Extended Suite (Calculated Concentration)
Volatile TPH/TRH in Gaseous Samples	EP103-PC	AIR	Volatile TPH/TRH by GC-MS with Preconcentration and Thermal Desorption Injection Based on USEPA TO15, MassDEP APH (Rev1 2009) and TPH/NEPM Fractions (2013)
Volatile TPH/TRH in Gaseous Samples (Calc Conc)	EP103-PC-MV	AIR	Volatile TPH/TRH by GC-MS with Preconcentration and Thermal Desorption Injection Based on USEPA TO15, MassDEP APH (Rev1 2009) and TPH/NEPM Fractions (2013) Calculated from ppbv results based on given Temperature and Atmospheric Pressure and mid-range molecular weights

QUALITY CONTROL REPORT

Work Order	: EN1511654	Page	: 1 of 4
Client		Laboratory	: Environmental Division Newcastle
Contact	: MR DANIEL GUILLE	Contact	: Peter Keyte
Address	:	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
E-mail	: daniel.guille@coffey.com	E-mail	: peter.keyte@alsglobal.com
Telephone	:	Telephone	: +61 2 4014 2500
Facsimile	:	Facsimile	: +61 2 4967 7382
Project	: GEOTLCOV25397AA SURRY HILSS VILLAGE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 18-May-2015
C-O-C number	: 0353	Date Analysis Commenced	: 21-May-2015
Sampler	:	Issue Date	: 21-May-2015
Site	:	No. of samples received	: 5
Quote number	:	No. of samples analysed	: 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report ; Recovery and Acceptance Limits
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with ISO/IEC 17025.	Daniel Junek Daniel Junek	Senior Air Analyst Senior Air Analyst	Newcastle - Organics Newcastle

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:0% - 20%.

Sub-Matrix: AIR						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP101: VOCs by US	EPA Method TO15r (Q	C Lot: 105295)							
EN1511654-001	#9678 C0708	EP101-15X: 1.1.1-Trichloroethane	71-55-6	0.5	ppbv	<0.0500	<50.0	0.00	No Limit
		EP101-15X: Benzene	71-43-2	0.5	ppbv	<0.0300	<30.0	0.00	No Limit
		EP101-15X: cis-1.2-Dichloroethene	156-59-2	0.5	ppbv	<0.0050	<5.0	0.00	No Limit
		EP101-15X: Ethylbenzene	100-41-4	0.5	ppbv	<0.0500	<50.0	0.00	No Limit
		EP101-15X: Naphthalene	91-20-3	0.5	ppbv	<0.0190	<19.0	0.00	No Limit
		EP101-15X: ortho-Xylene	95-47-6	0.5	ppbv	<0.0500	<50.0	0.00	No Limit
		EP101-15X: Tetrachloroethene	127-18-4	0.5	ppbv	<0.0500	<50.0	0.00	No Limit
		EP101-15X: Toluene	108-88-3	0.5	ppbv	<0.0500	<50.0	0.00	No Limit
		EP101-15X: Trichloroethene	79-01-6	0.5	ppbv	<0.0010	<1.0	0.00	No Limit
		EP101-15X: Vinyl chloride	75-01-4	0.5	ppbv	<0.0020	<2.0	0.00	No Limit
		EP101-15X: meta- & para-Xylene	108-38-3 106-42-3	1	ppbv	<0.100	<100	0.00	No Limit
EP103: Petroleum H	lydrocarbons in Gaseo	us Samples (QC Lot: 105296)	100 42 0						
EN1511654-001	#9678 C0708	EP103-PC: C10 - C14 Fraction		50	ppbv	<5.00	<5000	0.00	No Limit
		EP103-PC: C6 - C9 Fraction		50	ppbv	<5.00	<5000	0.00	No Limit
EP103: Total Recov	erable Hydrocarbons -	NEPM 2013 (QC Lot: 105296)							
EN1511654-001	#9678 C0708	EP103-PC: >C10 - C16 Fraction	>C10_C16	50	ppbv	<5.00	<5000	0.00	No Limit
		EP103-PC: C6 - C10 Fraction	C6_C10	50	ppbv	<5.00	<5000	0.00	No Limit

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control terms Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (DCS) refers to certified reference materials, or known interference free matrices spiked with target analytes. The purpose of these QC parameters are to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS and DCS.

Sub-Matrix: AIR	Γ		Method Blank (MB) Report		Laboratory Control	Spike (LCS) and Labor	atory Control Spi	ke Duplicate	(DCS) Report	
					Spike	Spike Re	covery (%)	Recovery Li	mits (%)	RP	Ds (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP101: VOCs by USEPA Method TO15r	(QCLot: 105295)										
EP101-15X: 1.1.1-Trichloroethane	71-55-6	0.5	ppbv	<0.5	10 ppbv	105	108	70	130	25	25
EP101-15X: Benzene	71-43-2	0.5	ppbv	<0.5	10 ppbv	96.8	99.9	70	130	25	25
EP101-15X: cis-1.2-Dichloroethene	156-59-2	0.5	ppbv	<0.5	10 ppbv	78.4	82.0	70	130	25	25
EP101-15X: Ethylbenzene	100-41-4	0.5	ppbv	<0.5	10 ppbv	91.7	98.2	70	130	25	25
EP101-15X: meta- & para-Xylene	108-38-3 106-42-3	1	ppbv	<1.0	20 ppbv	93.3	98.7	70	130	25	25
EP101-15X: Naphthalene	91-20-3	0.5	ppbv	<0.5	10 ppbv	74.0	78.7	70	130	25	25
EP101-15X: ortho-Xylene	95-47-6	0.5	ppbv	<0.5	10 ppbv	93.7	97.1	70	130	25	25
EP101-15X: Tetrachloroethene	127-18-4	0.5	ppbv	<0.5	10 ppbv	87.0	91.2	70	130	25	25
EP101-15X: Toluene	108-88-3	0.5	ppbv	<0.5	10 ppbv	91.0	95.2	70	130	25	25
EP101-15X: Trichloroethene	79-01-6	0.5	ppbv	<0.5	10 ppbv	93.1	97.1	70	130	25	25
EP101-15X: Vinyl chloride	75-01-4	0.5	ppbv	<0.5	10 ppbv	117	122	70	130	25	25
EP103: Petroleum Hydrocarbons in Gase	eous Samples (QCLo	t: 105296)									
EP103-PC: C10 - C14 Fraction		50	ppbv	<50	1200 ppbv	102	104	70	130	25	25
EP103-PC: C6 - C9 Fraction		50	ppbv	<50	2800 ppbv	102	106	70	130	25	25
EP103: Total Recoverable Hydrocarbons	- NEPM 2013 (QCLot	: 105296)									
EP103-PC: >C10 - C16 Fraction	>C10_C16	50	ppbv	<50	500 ppbv	99.0	98.3	70	130	25	25
EP103-PC: C6 - C10 Fraction	C6_C10	50	ppbv	<50	3000 ppbv	104	107	70	130	25	25

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

CERTIFICATE OF ANALYSIS

Work Order	EN1511654	Page	: 1 of 4
Client		Laboratory	Environmental Division Newcastle
Contact	: MR DANIEL GUILLE	Contact	: Peter Keyte
Address	:	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
E-mail	: daniel.guille@coffey.com	E-mail	: peter.keyte@alsglobal.com
Telephone	:	Telephone	: +61 2 4014 2500
Facsimile	:	Facsimile	: +61 2 4967 7382
Project	: GEOTLCOV25397AA SURRY HILSS VILLAGE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 18-May-2015 12:44
C-O-C number	: 0353	Date Analysis Commenced	: 21-May-2015
Sampler	:	Issue Date	: 21-May-2015 15:24
Site	:		
		No. of samples received	: 5
Quote number	:	No. of samples analysed	: 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

	NATA Accredited Laboratory 825 Accredited for compliance with		electronically signed by the authorized signation procedures specified in 21 CFR Part 11.	atories indicated below. Electronic signing has	been
NATA	ISO/IEC 17025.	Signatories	Position	Accreditation Category	
		Daniel Junek	Senior Air Analyst	Newcastle	
WORLD RECOGNISED		Daniel Junek	Senior Air Analyst	Newcastle - Organics	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

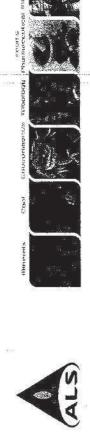
* = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- EP101, EP103: Results reported in mg/m³ are calculated from PPMV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an Absolute Pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere taken at the time of measurement.
- CAN-001: Results for Pressure Gauge as Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field
 measurements due to changes in temperature and pressure

Page : 3 of 4 Work Order : EN1511654 Client : COFFEY GEOTECHNICS Project : GEOTLCOV25397AA SURRY HILSS VILLAGE

Analytical Results

Sub-Matrix: AIR (Matrix: AIR)		Clie	ent sample ID	#9678 C0708	#9680 C0710	Unused C1079	Unused C0728	Unused C1117
	Cl	ient samplii	ng date / time	[15-May-2015]	[15-May-2015]	[15-May-2015]	[15-May-2015]	[15-May-2015]
Compound	CAS Number	LOR	Unit	EN1511654-001	EN1511654-002	EN1511654-003	EN1511654-004	EN1511654-005
				Result	Result	Result	Result	Result
EP101: VOCs by USEPA Method T	O15 (Calculated Conc	entration)						
^ Vinyl chloride	75-01-4	0.0051	mg/m³	<0.0051	<0.0051			
^ cis-1.2-Dichloroethene	156-59-2	0.02	mg/m³	<0.0200	<0.0200			
^ 1.1.1-Trichloroethane	71-55-6	0.27	mg/m³	<0.270	<0.270			
^ Benzene	71-43-2	0.1	mg/m³	<0.100	<0.100			
^ Trichloroethene	79-01-6	0.0054	mg/m³	<0.0054	0.0102			
^ Toluene	108-88-3	0.19	mg/m³	<0.190	<0.190			
^ Tetrachloroethene	127-18-4	0.34	mg/m³	<0.340	8.34			
^ Ethylbenzene	100-41-4	0.22	mg/m³	<0.220	<0.220			
^ meta- & para-Xylene	108-38-3 106-42-3	0.43	mg/m³	<0.430	<0.430			
^ ortho-Xylene	95-47-6	0.22	mg/m³	<0.220	<0.220			
^ Naphthalene	91-20-3	0.1	mg/m³	<0.100	<0.100			
EP101: VOCs by USEPA Method T	015r							
Vinyl chloride	75-01-4	0.002	ppmv	<0.0020	<0.0020			
cis-1.2-Dichloroethene	156-59-2	0.005	ppmv	<0.0050	<0.0050			
1.1.1-Trichloroethane	71-55-6	0.05	ppmv	<0.0500	<0.0500			
Benzene	71-43-2	0.03	ppmv	<0.0300	<0.0300			
Trichloroethene	79-01-6	0.001	ppmv	<0.0010	0.0019			
Toluene	108-88-3	0.05	ppmv	<0.0500	<0.0500			
Tetrachloroethene	127-18-4	0.05	ppmv	<0.0500	1.23			
Ethylbenzene	100-41-4	0.05	ppmv	<0.0500	<0.0500			
meta- & para-Xylene	108-38-3 106-42-3	0.1	ppmv	<0.100	<0.100			
ortho-Xylene	95-47-6	0.05	ppmv	<0.0500	<0.0500			
Naphthalene	91-20-3	0.019	ppmv	<0.0190	<0.0190			
EP103: Petroleum Hydrocarbons i	n Gaseous Samples							
C6 - C9 Fraction		5	ppmv	<5.00	<5.00			
C10 - C14 Fraction		5	ppmv	<5.00	<5.00			
EP103: Petroleum Hydrocarbons i	n Gaseous Samples (C	alc Conc						
 C6 - C9 Fraction 		20	mg/m³	<20.0	<20.0			
^ C10 - C14 Fraction		35	mg/m ³	<35.0	<35.0			
EP103: Total Recoverable Hydroca								
C6 - C10 Fraction	C6_C10	5	ppmv	<5.00	<5.00			
[^] C6 - C10 Fraction minus BTEX	C6 C10-BTEX	5	ppmv	<5.00	<5.00			
(F1)	_							
>C10 - C16 Fraction	>C10_C16	5	ppmv	<5.00	<5.00			



Analytical Results

Sub-Matrix: AIR (Matrix: AIR)		Clie	ent sample ID	#9678 C0708	#9680 C0710	Unused C1079	Unused C0728	Unused C1117
	Cl	ient sampli	ng date / time	[15-May-2015]	[15-May-2015]	[15-May-2015]	[15-May-2015]	[15-May-2015]
Compound	CAS Number	LOR	Unit	EN1511654-001	EN1511654-002	EN1511654-003	EN1511654-004	EN1511654-005
				Result	Result	Result	Result	Result
EP103: Total Recoverable Hydrocarbons	- NEPM 2013 - C	ontinued						
 >C10 - C16 Fraction minus Naphthalene (F2) 		5	ppmv	<5.00	<5.00			
EP103: Total Recoverable Hydrocarbons	- NEPM 2013 (C	alc Conc)						
C6 - C10 Fraction	C6_C10	20	mg/m³	<20.0	<20.0			
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	mg/m³	<20.0	<20.0			
>C10 - C16 Fraction	>C10_C16	40	mg/m³	<40.0	<40.0			
 >C10 - C16 Fraction minus Naphthalene (F2) 		40	mg/m³	<40.0	<40.0			
Sampling Quality Assurance								
Pressure - As received	PRESSURE	0.1	kPa	102	99.7	<0.1	<0.1	<0.1
Pressure - Laboratory Atmosphere		0.1	kPa	101	101	101	101	101
Temperature as Received		0.1	°C	21.0	21.0	21.0	21.0	21.0
USEPA Air Toxics Method TO15r Surrog	ates							
4-Bromofluorobenzene	460-00-4	0.5	%	94.1	83.3			

		CHAI	N-OF-CU	STODY AN	D ANALY	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	Pageof	0353
	Consign	Consigning Office:	Chappwood	voed				
coffev •	Report		Its to: derived puille	kui Qa		Mobile: 0450 65526	3	@coffey.com
	Invoices to:		NAWOOD	office.		Phone:	Email: V	@coffey.com
Project No: GEOTLCOV 25397 AA Tat				00		Ana	Analysis Request Section	
Project Name: Swww Hills Village Laboratory:	1000	.5	Jewcan	B		//		
Sampler's Name: Manouco Romu ^{U Pro} Special Instructions:	and the second s	Barrie	ser Barriel Bulle	Je .				
Relevant agreements: Eurofins COF_ENAUABTF00952AA_MSA1; ALS COF_ENAUABTF00952AA_MSA2 and SGS COF_ENAUABTF00952AA_MSA3	A1; ALS COF_ENAUA	BTF00952AM	MSA2 and SG	S COF_ENAUABTF00	1952AA_MSA3	1/10		
	Sample	F	Matrix (Soil etc)	Container Type & Presenvative*	k T-A-T (specify)	11/23		NOTES
40. Sample IU		IIme	/110-11001		// finadel			
# 9678 -	15/2	Æ	Solland	1 convet	20tory			
	2/	WW	MM. Kerlow	1 CONTINUE	Rap	X		
			>		\$			
Unused - 1					a monte service of the		Environmental Division	
							Mork Order Reference	
- III7								
		202					EN 1311034	
		20						
		-						
	2							
			-		e.			
							lelephone : +61 2 4014 2500	
					ð			
	¥2	1920 3						
								-
		- 1 (4)						
RELINQUISHED BY				R	RECEIVED BY		Sample Receipt Advice: (Lab Use Only)	1
Name: Howel Filly, Date: 18/5/	5100,	♦ Name: Man	yara	Spence	2	Date: 18/05/15	All Samples Recieved in Good Condition	
Coffey Environments // / Time: RMM		Company:	W: ALS			Time: 12,44pm	All Documentation is in Proper Order	٦
Name: Date:		↓ Name:				Date:	Samples Received Properly Chilled	
Company: Time:		Company:	iy:		2	Time:	Lab. Ref/Batch No.	
*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - N S - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative	Slass Bottle, J - Glas ulfate, NP - No Pre:	s Jar, V- Via ervative, O	l, Z - Ziplock Ba P - Other Prese	ag, N - Nitric Acid P crvative	reserved, C - H	N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, ative		
Coffey Environments				Version: 5	:5		Issue Da	lssue Date: 11/08/2014

GOWANS PRINTING (02) 9765 3545

CASS CANNYTER SAMPLING EQUIPMENT.

Inquiries: Client Services - Newcastle Phone: +61 (02) 4014 2500 E-mail: samples: newcastle@alserviro.com

ich to: int / Officer	patch to: Cliant / Officer COEEEV	A Silse ONLY
Contact:	Daniel Guille	Request Received By: HW
Telephone:	0450 655 263	DeliverBy: 14/5/15
ALS Quotation:		DaterTime Dispetched: 1.3 -5-1
y Address:	L19, Tower B, 799 Pacific Highway	Workorden
	Chatswood NSW 2067	Agreed Rent Free Reriod: 14 days

SPECIAL INSTRUCTIONS: JOB: GEOTLCOV25397AA-AE, PO: S25653DG..

Equipment Request

	£
	We Peramet
	Cepter Stores
	Capa
	Melveu GT
	Gauge
	55146 ×
NISTERS OF THE PARTY OF THE	(Soldiaer) (pus) Minican ^{tor}
CA	5 5

3-05+15

diffed OF

CONNECTORS AND FLOW CONTROL DEVICES

Soil Gas Sampling Train Duplicate Soil Gas		150ml	QN No.	Yes	Yes	Yes / Yes	ø o	Incl Above
Sampler Female QT Connectors	,	illine:		1	8.	-	2 0	\$120 ea. Replecement
Male QT Connector	1	X	æ	x	х 1		a	 \$120 ea. Replacement
Pressure Gauge - QT	1	4		ı		Yes / Yes	ø	\$250 e.a. Reclacament
Sampling Kit Case - Soll Gas			æ	a	×	Yes	MA	\$200 Replacment
		4	79			9	NA	\$80 ea.
½" Swagelok connectors and ferrules (spares)	•	•				1		\$5 e.a. Replacement

2m tubing	
2m	715
Other (specify)	Refer to Acceptance of Tel
-	Refer

		is			
	41		St.		
		6			
		1	1.45	12.0	
		1	3	5	
		谷	1	3	
- 10		By		3-	10.00
- 3	節			9	
		Z		0	
1000			9	3	4
		ð	901	1	7
			98 - R	9	
	112	5	- De	Ø	
1.00		ka k	da	3	
			, P	1	
	10.00	100		1	À.
				DG.	d b
	1.18			1	(Che
				a.	spa
				ž	0
				len le	Ueu
1			11-58	E.S	- UB
		~		SUC	Si o
3	1	ST.	- 5	Ō	0
100			1		ARCH.
1					
		8			影
		8	6		60
		B	N.		
		ě.	- Ba	2.5	
	378	100	12-20-12 12-12-12	43	
			5		
1		2	Z		修
	逐	10			K
	1	8	-8	0	L
522	1.1.1	18	10		点
Ten	100	Sluc	e		100
10		1 E	惊		
Thee	1	00	B	0	be
cette		1.5	12	X	Oat
Acv	sino	1.3	Sal	E B	Des
F 10	120	0	ē	-Dec	er.
celes.	12	Brie	anis		15
12	13	0	0	Z.	0

DISPATCH RECORD CAS CANISTER SAMPLING EQUITION

ALS SUPPLIED EQUIPMENT

Nos	710 710 711 708 728	140 140	053	005 -35	
Value		2			2
ltem Description	1.4 L Silonite Mini-Can with Q7 Valve	Soil Gas Sampling Train (Compact) with QT Connections - 150ml/min	Soil Gas Duplicate Sampling Train with QT Connections – 150ml/min $(\mathcal{H}\mathcal{I})$	Vacuum Gauge with female QT Connection	Female QT to ¼* tube connector
Quantity	IJ	m		-	14
ltem	H	3.	a: •	20 P	

MONT SELECTION -------Perth - Wollongong -Newsya with-· Contravales - Marcare Contentia · Seindeg ·

11-50-11

ENFMODR1.1

Howrs - Perth - We Songeoge - Syoney - Townswile - Transigon - Weigesen

alsglobal con

PROMIT SOLLL'AND THOMAS

11-05-11

ENFACOR1.1

www.alsglobal.com

	ALS Environmental, Newcastle 5/585 Maitland Road Mayfield West, NSW 2304	Note that Dangerous Goods Transport Regulations may apply after sampling if the cylinder is pressurised or contains hazardous materials.	3 2 3		HISPLE INCOMES & HEISE
		$\overline{\ }$	\mathbf{X}	*	
	Serial Nos				ed direct to thoratory.
NG I	Replacement Value			and the second sec	ory and suppli to Newcastle L
Internal formation of the second	ltem Description	Male QT to ¼" tube connector	Tripod	Acception of Lemis	Additional canisters and samplers can be ordered through any ALS Environmental Laboratory and supplied direct your site or office by courier. For the fastest turnaround, canisters should be returned direct to Newcastle Laboratory. Environment 100611 100611 100611 For the fastest turnaround, Canisters SCULLS TECHNES 100611 100611
	Quantity	1	<u></u>	e of Turms	and samplers courier. For t
ALS	Item			Acceptance of Ac	Additional canisters a your site or office by ENMACR1.1 11-05-13

aan kee aray shuroona tana aa shuqaa shacada daana kada kadayaan facay Tanande Taalyaa Magaana WWWW alsogodbad com

iliribana - Adelanda - Bendigo - Canibarra - Geelong - Chedenone - Mahauane (500 usby) Annawarrawarrawar

Britame - Advise - Enders - Greene - Catassa - Mitamire Ecoredor - Malani - Malani - Malani - Marani - Marine - Managar - Juni - Malani - Malani - Managar - Marani - Managar

		CHA	N-OF-CL	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	D ANALY	SIS RE	QUEST		Page_		0353
	Consign	Consigning Office:	Chala wood	wood							
coffev	Report	Report Results to: det viel	daniel.	Xii Lle		Mobile: (0450 655	- 263 Email:	Jainol	daniel, quille	@coffey.com
6	Invoices to:	to: Ch	Chatawood a	obre.		Phone:		Email:		0	@coffey.com
Project No: GEOTLCOV 25397 AA Task No:	:0			00			1.200	Analysis Request Section	: Section		
Project Name: Suury Hills Village Labor	ALS	in	Vervicion	Re .		1		1111		////	
arresia Rehy 0	ager:	Bari	Bariel Rulle.	<u>D</u> a .				///	/		
Special Instructions:			S				R.				
Relevant agreements: Eurofins COF_ENAUABTF00952AA_MSA1 ; ALS COF_ENAUABTF00952AA_MSA2 and SGS COF_ENAUABTF00952AA_MSA3	ALS COF ENAUA	BTF00952A/	MSA2 and SG	S COF_ENAUABTF0	0952AA_MSA3	X	1/10	////		//	
Lab No. Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	k T-A-T (specify)	eses ([]				NOTES
8 - MW	15/2	AM	Singano	1 convet	2 april	X					
- SI	15/5	AM	Keil bew	-	Selec	\sim					
1 1	1		0		So -	ł					
								Environ	Environmental Division	ion	
								Ne Ne	Newcastle		
									Work Order Reference		
								- EN1	EN1511654		
										-	
					k.						
	-							Telephone	Telephone : +61 2 4014 2500	200	
RELINQUISHED BY			Ì	RE	RECEIVED BY			Sample Rece	Sample Receipt Advice: (Lab Use Only)	b Use Only)	
		Name: Na	yala	spence	l.	Date: /&	18/05/15	All Samples 8	All Samples Recieved in Good Condition	d Condition	
Coffey Environments		Company:	V: ALS			Time: /	2144pm	All Documen	All Documentation is in Proper Order	er Order	
Name: ⁴ ⁶ Date:		Name:				Date:	.) 2004	Samples Rec	Samples Received Properly Chilled	chilled	
Company: Time:		Company:	y:			Time:		Lab. Ref/Batch No.	ch No.		
*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - N 5 - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative. OP - Other Preservative	s Bottle, J - Glas ite, NP - No Pres	s Jar, V-Via ervative. O	l, Z - Ziplock Ba • - Other Prese	₃g, N - Nitric Acid P rvative	reserved, C - H	ydrochlori	N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, ative				
Coffau Environments				Version [,] 5	R.			x		lssue D	Issue Date: 11/08/2014

Appendix D – QA/QC Assessment

A.C.N. 140 765 902

A B N 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

1. QUALITY CONTROL

1.1 Introduction

The steps in the sampling and analysis process are subject to natural and inherent variability, and this can affect the results produced, and the overall quality of the data sets generated. In order to minimise the effect of this, standard procedures are used throughout for works carried out in the field, and in the laboratory. The use of such procedures represents one aspect of the quality assurance process. To measure the effectiveness of the quality assurance process, quality control samples can be tested, and other quality control tests can be conducted during the analysis of samples taken in the field.

Quality control (QC) samples and tests can be used to assess both the completeness, accuracy and the precision of the results produced.

- Measures of completeness provide information on the percentage of useable data collected during an activity. Completeness is assessed by percentage completion of sampling plan, sampling documentation, samples holding times.
- Measures of comparability provide information on the equivalence of the data collected during each sampling and analytical event. This is assessed by a review of procedures and methods used in the field and laboratory, and of factors that may have affected the consistency of the sampling.
- Measures of representativeness provide information on the appropriateness of the sampling plan and procedures.
- Measures of accuracy provide information on how close to the true result is the reported result. For practical reasons, measures of accuracy are usually confined to the laboratory steps in the overall process.
- Measures of precision provide information on the variability in the results. Precision can be assessed as:
 - "repeatability" or intra-laboratory variation the degree of variation in a result when the same laboratory analyses a sample (or blind replicate) several times, and;
 - "reproducibility" or inter-laboratory variation the degree of variation in a result when a different laboratory separately analyses a sample.

In addition, blank samples can be used to assess whether extraneous materials and factors have contributed to the results obtained from the sampling and analysis process.

Quality control testing can be conducted covering all steps of the process (referred to as Field QC in this report), or just one portion of the process, such as the laboratory steps (referred to as Laboratory QC in this report).

A.C.N. 140 765 902

A B N 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

1.2 Field Quality Control

Precision of the sample collection, transport and analysis process is measured by the relative percent difference (RPD) between duplicate results. Acceptance targets for laboratory duplicates are dependent on matrix type, contaminant type and contaminant concentrations. Australian Standard AS 4482.1 – 2005 (*Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds*) provides the following guidance on the acceptable limits of precision for soil samples.

Typical relative percent difference is 30% - 50% of mean concentration of analyte. This variation can be expected to be higher for organic analysis than for inorganics, and for low concentration of analytes.

Noting this guidance, Coffey Environments has adopted the following acceptance criteria for RPD results on replicate samples for soil (metals, metalloids and organics):

- 30% for concentrations more than 10 times the laboratory limit of reporting (LOR), and;
- 50% for concentrations less than 10 times the LOR.

For groundwater samples, the acceptance targets for a range of contaminants are listed below. These have been based on acceptable RPD limits for laboratory replicate analysis (American Public Health Association (APHA), 1992). Because groundwater is a homogenous medium, sample heterogeneity (which is a potential major contributor to variability in soil samples) would not be expected to play a part in the variability in the sampling and analysis of groundwaters. Hence, the use of laboratory-based acceptance targets can be supported.

Contaminant/analyte classes	Acceptable RPD for concentrations more than 20 times the LOR	Acceptable RPD for concentrations less than 20 times the LOR
Volatile and semi-volatile organic compounds (including petroleum hydrocarbons), phenols, organochlorine pesticides, organophosphorus pesticides and herbicides	20%	40%
Metals and other inorganics	10%	25%

Table 1 – RPD	Accentance	Targets for	Contaminant/Analy	vto Classos
	Acceptance	I algets for	Containinant/Anal	yle Glasses

For blanks, Coffey Environments' approach is that the concentration of any contaminant should be less than the LOR in all blank samples.

A.C.N. 140 765 902

A B N 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

1.3 Laboratory Quality Control

Laboratories are accredited by the National Association of Testing Authorities (NATA) on the basis of their ability to provide quantitative evidence of their ability and competence to produce reliable results against recognised benchmarks NATA-accredited laboratories are able to demonstrate the ability to produce reliable, repeatable results for a range of parameters within a range of sample matrices. Each laboratory method used undergoes a validation process before it is adopted by the laboratory and accredited by NATA. As part of the validation process, the precision and accuracy of the method are established.

In addition, laboratories conduct their own quality control testing to indicate their performance on each reported batch of samples. The results of this testing are compared with the validated precision and accuracy.

Precision of results is measured by the Relative Percent Difference (RPD) between replicate samples selected within the laboratory. RPD is calculated in the same way as described above for Field QC.

Accuracy of results is assessed in a number of ways:

- Reference materials, with known concentrations of analytes are analysed with the batch of samples. The results of this analysis are compared with the established concentrations in the reference material.
- Spike additions. Known amounts of targeted analytes are added to the samples to be analysed, and the spiked samples are processed through the analytical process. The amount of spiked material is measured as the recovery of the added amount reported in the final result.
- Surrogate spikes. Known amounts of chemical compounds with similar properties to the targeted analytes are added to the samples to be analysed, and the spiked samples are processed through the analytical process. The amount of spiked material is measured as the recovery of the added amount reported in the final result.

Schedule B(3) of the National Environment Protection Measure (NEPM) for contaminated sites states that, in general, at least 70% recovery should be achievable from a reference method. Additionally, standard methods prepared by international agencies such as the US EPA and APHA, frequently have performance data such as expected spike recovery incorporated within the method. Where these vary from the 70% figure indicated in the NEPM Schedule, they are noted in the discussion of results which follows this introduction.

Based on the above, Coffey Environments has adopted 70% - 130% as the default acceptable range for spike recovery and surrogates spike recovery results, and as the default acceptance limits for the difference between analysis results and the expected result for reference materials.

Coffey Environments Australia Pty Ltd A.C.N. 140 765 902 A.B.N. 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

2. FIELD QA PROGRAM

A QA assessment of the field procedures is provided in Table 2 below.

Table 2 – Field QA

Item	Quality objective	Comment
Procedures	Compliance of field activities with Coffey SOP	Fieldworks conducted according to Coffey SOP
Calibration of field instruments	Instruments calibrated by qualified technician and checked in the field.	Calibration certificates and field records provided in Appendix G.
COC documentation	COC documentation completed.	COC provided in Appendix C.
Sampling holding time	All samples extracted and analysed within recommended holding times.	All samples were analysed within holding times

A.C.N. 140 765 902

A B N 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

2 SOIL SAMPLING QC PROGRAMME

2.1 Field Quality Control Programme

As noted in Section 1.2, precision of the sample collection, transport and analysis process is measured by the relative percent difference (RPD) between duplicate results. The following section assesses the adequacy of this process.

Number of Days of Sampling: 2 days

Number of Primary Samples Analysed: 30

Table 3 – Sampling Event Summary

Date Sampled	Primary Sample	Duplicate Sample	Triplicate Sample	сос
13/05/2015	BH8_0.1	QC1	QC1A	457842
29/05/2015	Location of MW04_3.0m	QC5	QC5A	459646

A summary of the number and type of QC samples collected is presented in Table 4.

Table 4 – QC Sample Summary

Type of QC Samples	No. of Samples
Field Duplicates (at least 1 in 20 samples)	2 intra lab + 2 inter lab
Trip Blanks (at least 1/ sampling event)	1
Rinsate Blanks (at least 1/ sampling day)	1

2.1.1 Field Duplicates

The adequacy of the field duplicate sampling program for soil is summarised in Table 5.

Table 5 – Field Duplicate Sample Adequacy

	Yes	No (comment below)	Not Applicable
A. Was an adequate number of field duplicates analysed	\boxtimes		
B. Were RPDs within Control Limits?			
a. Organics		\boxtimes	
b. Metals/inorganics		\boxtimes	

Two RPD results were outside the acceptable range; sampling procedures, laboratory analytical methods and laboratory results were investigated. The results of this review are presented in Table 6 below.

Coffey Environments Australia Pty Ltd A.B.N. 65 140 765 902

coffey?

A.C.N. 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

Table 6 – Soil RPDs outside Acceptable Range

Sampling Date	Primary Sample (ALS)	Duplicate/ Triplicate Sample	Laboratory	Analyte	RPD %
13/05/2015	BH8_0.1	QC1	Eurofins	zinc	32
13/05/2015	BH8_0.1	QC1A	ALS	Pyrene	92
13/05/2015	BH8_0.1	QC1A	ALS	Total PAHs	76

A detailed review of analytical results with RPD exceedances indicated that the unacceptable result is attributed to the heterogeneous nature of soil, and this heterogeneity can give rise to RPD exceedances. These results are not considered to compromise the integrity of the analytical results.

Comments:

RPD values outside the acceptable range can be attributed to heterogeneity of the sample, and the variations in RPDs can be associated with the distribution of the soil matrix.

98% of all replicate sample results gave an RPD value within the acceptable range.

Equipment Rinsates and Trip Blanks

The adequacy of the equipment rinsates and trip blank sampling program for soil is summarised in Table 7.

Table 7 – Trip Blank Sample Adequacy

	Yes	No
		(Comment below)
A. Was an adequate number of Trip Blanks collected?		\boxtimes
B. Were the Trip Blanks free of contaminants?	\boxtimes	

Comments: A trip blank was prepared and analysed for one day of soil investigation. The results indicated that no analyte was detected in the sample indicating that transport procedures followed during the field works had been adequate.

Coffey Environments Australia Pty Ltd A.C.N. 140 765 902 A.B.N. 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

2.1.2 Rinsate Blanks

The adequacy of the rinsate blank sampling program for soil is summarised in Table 8.

Table 8 – Rinsate Blank Sample Adequacy

		No
		(Comment below)
A. Was an adequate number of Rinsate Blanks collected?	\boxtimes	
B. Were the Rinsate Blanks free of contaminants?	\boxtimes	

Comments: A rinsate blank was prepared and analysed for one day of soil investigation. The results indicated that no analyte was detected in the sample indicating that decontamination procedures followed during the field works had been adequate.

2.1.3 Overall Field QC Sample

The adequacy of the overall field QC sampling program for soil is summarised in Table 9.

Table 9 – Overall Field QC Sample Adequacy

	Yes	No
Field QC was:	Satisfactory	Unsatisfactory
	Partially Satisfactory	

2.2 Laboratory Quality Control Procedures

As noted in Section 1.3, laboratories conduct their own quality control testing to indicate their performance on each reported batch of samples. The following section assesses the adequacy of these procedures.

Table 10 – Summary Laboratory QC Samples

	Count of Samples
Laboratory Method Blanks (at least 1 per batch)	19
Laboratory Duplicates (at least 1 per batch or 1 per 10 samples whichever is the smaller)	13
Matrix Spikes/Matrix Spike Duplicates (1 for each soil type)	17
Laboratory Control Sample	18

Coffey Environments Australia Pty Ltd A.C.N. 140 765 902 A.B.N. 65 140 765 902

coffey?

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

2.2.1 Laboratory Duplicates

The adequacy of the field duplicate sampling program for soil is summarised in Table 11.

Table 11 – Laboratory QC Sample Summary

	Yes	No
		(Comment below)
Were the laboratory blanks/reagents blanks free of contamination?	\boxtimes	
Were the spike recoveries within control limits?		
a. Organic compounds except phenols (60% - 110%)	\boxtimes	
Were the RPDs of the laboratory duplicates within control limits?	\boxtimes	

Comments: Nil

2.2.2 **Overall Internal Laboratory QC Sampling Program**

The adequacy of the internal laboratory QC sampling program for soil is summarised in Table 12.

Table 12 – Overall Internal Laboratory QC Summary

	Yes	No
The laboratory internal QC was:	Satisfactory	Unsatisfactory
	Partially Satisfactory	

A.C.N. 140 765 902

A.B.N. 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

3 GROUNDWATER SAMPLING QC PROGRAMME

3.1 Field Quality Control Programme

As noted in Section 1.2, precision of the sample collection, transport and analysis process is measured by the relative percent difference (RPD) between duplicate results. The following section assesses the adequacy of this process.

Number of Days of Sampling: 2 days

Number of Primary Samples Analysed: 4

Table 13 – Sampling Event Summary

Date Sampled	Primary Sample	Duplicate Sample	Triplicate Sample	COC
15/05/2015	MW2	DUP01	-	457829
2/06/2015	MW4	-	QC8	851

A summary of the number and type of QC samples collected is presented in Table 14.

Table 14 – QC Sample Summary

Type of QC Samples	No. of Samples
Field Duplicates (at least 1 in 20 samples)	1 intra lab + 1 inter lab
Trip Blanks (at least 1/ sampling event)	1
Rinsate Blanks (at least 1/day)	1

3.1.1 Field Duplicates

The adequacy of the field duplicate sampling program for groundwater is summarised in Table 15.

Coffey Environments Australia Pty Ltd A.B.N. 65 140 765 902

coffey?

A.C.N. 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

Table 15 – Field Duplicate Sample Adequacy

	Yes	No (comment below)	Not Applicable
A. Was an <u>adequate number</u> of field duplicates analysed			
B. Were RPDs within Control Limits?a. Organicsb. Metals/inorganics			

Where RPDs were outside the acceptable range, sampling procedures, laboratory analytical methods and laboratory results were investigated. The results of this review are presented in Table 16.

Sampling Date	Primary Sample (ALS)	Duplicate/ Triplicate Sample	Laboratory	Analyte	RPD %
2/06/2015	MW4	QC8	ALS	TRH C6-C10 less BTEX (F1)	37
2/06/2015	MW4	QC8	ALS	TRH C6-C10	37
2/06/2015	MW4	QC8	ALS	TRH C6 - C9	37

Table 16 – Groundwater RPDs outside Acceptable Range

A detailed review of analytical results with RPD exceedances indicated that all unacceptable results can be attributed either to low analyte concentrations that have exaggerated the percentage differences with respect to small total concentration differences, or to variability of samples in the case where the TRH concentrations were greater than the analytes solubility.

Comment:

RPD values outside the acceptable range can be attributed to one or more of the reasons outline above.

98% of all replicate sample results gave an RPD value within the acceptable range.

3.1.2 **Trip Blanks**

The adequacy of the trip blank sampling program for soil is summarised in Table 17.

Table 17 – Trip Blank Sample Adequacy

		No
		(Comment below)
A. Was an adequate number of Trip Blanks collected?		\boxtimes
B. Were the Trip Blanks free of contaminants?	\boxtimes	

A.C.N. 140 765 902

A.B.N. 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

Comments: A trip blank was prepared and analysed for one day of soil investigation. The results indicated that no analyte was detected in the sample indicating that transport procedures followed during the field works had been adequate.

3.1.3 Rinsate Blanks

The adequacy of the rinsate blank sampling program for soil is summarised in Table 18.

Table 18 – Rinsate Blank Sample Adequacy

		No
		(Comment below)
A. Was an adequate number of Rinsate Blanks collected?		\boxtimes
B. Were the Rinsate Blanks free of contaminants?	\square	

Comments: A rinsate blank was prepared and analysed for one day of soil investigation. The results indicated that no analyte was detected in the sample indicating that decontamination procedures followed during the field works had been adequate.

3.1.4 Overall Field QC Sample

The adequacy of the overall field QC sampling program for groundwater is summarised in Table 19.

Table 19 – Overall Field QC Summary

	Yes	No
The Field QC was:	Satisfactory	Unsatisfactory
	Partially Satisfactory	

3.2 Laboratory Quality Control Procedures

As noted in Section 1.3, laboratories conduct their own quality control testing to indicate their performance on each reported batch of samples. The following section assesses the adequacy of these procedures.

Table 20 – Summary Laboratory QC Samples

	Count of Samples
Laboratory Method Blanks (at least 1 per batch)	22
Laboratory Duplicates (at least 1 per batch or 1 per 10 samples whichever is the smaller)	8
Matrix Spikes/Matrix Spike Duplicates (at least 1 per batch or 1 per 10 samples whichever is the smaller)	7
Laboratory Control Sample	26

coffey

A.C.N. 140 765 902 A.B.N. 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

3.2.1 Laboratory Duplicates

The adequacy of the field duplicate sampling program for soil is summarised in Table I21.

Table 21 – Laboratory QC Sample Summary

	Yes	No
		(Comment below)
Were the laboratory blanks/reagents blanks free of contamination?	\boxtimes	
Were the spike recoveries within control limits?		
b. Organic compounds except phenols (60% - 110%)	\boxtimes	
Were the RPDs of the laboratory duplicates within control limits?		

Comments:

Overall a 100% pass rate was reported for laboratory quality control procedures.

3.2.2 Overall Internal Laboratory QC Sampling Program

The adequacy of the internal laboratory QC sampling program for groundwater is summarised in Table 22.

Table 22 – Overall Internal Laboratory QC Summary

	Yes	No
The laboratory internal QC was:	Satisfactory	Unsatisfactory
	Partially Satisfactory	

4 SOIL VAPOUR SAMPLING QC PROGRAMME

4.1 Field Quality Control Programme

As noted in Section 1.2, precision of the sample collection, transport and analysis process is measured by the relative percent difference (RPD) between duplicate results. The following section assesses the adequacy of this process.

Number of Days of Sampling: 1 days

Number of Primary Samples Analysed: 2

Table 13 – Sampling Event Summary

Date Sampled	Primary Sample	Duplicate Sample	Triplicate Sample	COC
15/05/2015	Sv01	-	-	9680

Coffey Environments Australia Pty Ltd A.C.N. 140 765 902 A.B.N. 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

15/05/2015 Sv02 -	-	9678
-------------------	---	------

A summary of the number and type of QC samples collected is presented in Table 14.

Table 14 – QC Sample Summary

Type of QC Samples	No. of Samples
Field Duplicates (at least 1 in 20 samples)	0 intra lab + 0 inter lab
Trip Blanks (at least 1/ sampling event)	0
Rinsate Blanks (at least 1/day)	0

4.1.1 **Field Duplicates**

The adequacy of the field duplicate sampling program for soil vapour is summarised in Table 15.

Coffey Environments Australia Pty Ltd A.B.N. 65 140 765 902

coffey?

A.C.N. 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

Table 15 – Field Duplicate Sample Adequacy

	Yes	No (comment below)	Not Applicable
B. Was an <u>adequate number</u> of field duplicates analysed			
B. Were RPDs within Control Limits?			
a. Organics			\bowtie
b. Metals/inorganics			\square

Where RPDs were outside the acceptable range, sampling procedures, laboratory analytical methods and laboratory results were investigated. The results of this review are presented in Table 16.

Table 16 – Soil vapour RPDs outside Acceptable Range

Sampling Date	Primary Sample (ALS)	Duplicate/ Triplicate Sample	Laboratory	Analyte	RPD %
-	-	-	-	-	-

Comment: No duplicate or triplicate sample was analysed.

4.1.2 **Trip Blanks**

The adequacy of the trip blank sampling program for soil is summarised in Table 17.

Table 17 – Trip Blank Sample Adequacy

	Yes	No
		(Comment below)
A. Was an adequate number of Trip Blanks collected?		\boxtimes
B. Were the Trip Blanks free of contaminants?		

Comments: Trip blank were not analysed as part of this investigation.

A.C.N. 140 765 902 A.B.N. 65 140 765 902

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

4.1.3 Overall Field QC Sample

The adequacy of the overall field QC sampling program for groundwater is summarised in Table 19.

Table 19 – Overall Field QC Summary

	Yes	Νο
The Field QC was:	Satisfactory	Unsatisfactory
	Partially Satisfactory	

4.2 Laboratory Quality Control Procedures

As noted in Section 1.3, laboratories conduct their own quality control testing to indicate their performance on each reported batch of samples. The following section assesses the adequacy of these procedures.

Table 20 – Summary Laboratory QC Samples

	Count of Samples
Laboratory Method Blanks (at least 1 per batch)	2
Laboratory Duplicates (at least 1 per batch or 1 per 10 samples whichever is the smaller)	2
Matrix Spikes/Matrix Spike Duplicates (at least 1 per batch or 1 per 10 samples whichever is the smaller)	2
Laboratory Control Sample	2

4.2.1 Laboratory Duplicates

The adequacy of the field duplicate sampling program for soil is summarised in Table I21.

Table 21 – Laboratory QC Sample Summary

	Yes	No
		(Comment below)
Were the laboratory blanks/reagents blanks free of contamination?	\boxtimes	
Were the spike recoveries within control limits?		
c. Organic compounds except phenols (60% - 110%)	\boxtimes	
Were the RPDs of the laboratory duplicates within control limits?	\boxtimes	

Comments:

Overall a 100% pass rate was reported for laboratory quality control procedures.

Coffey Environments Australia Pty Ltd A.C.N. 140 765 902 A.B.N. 65 140 765 902

 \boxtimes

 \square

QA/QC DATA VALIDATION REPORT

Job No: GETOLCOV25397AA Batch No: Soil: ES1522078, ES1523062, 459031, 459646, 460093 Groundwater: 457829, 459907, ES1523243 Soil vapour: EN1511654

5 CONCLUSION

5.1 **Data Usability**

- 1. Data Directly Usable
- 2. Data Usable with the following corrections/modifications (see comment below)
- 3. Data Not Usable.

5.2 **Data Quality**

Coffey Environments considers that the quality control procedures and results were acceptable for the purposes of this investigation.

QA/QC Report Prepared by

Daniel Guille

QA/QC Report Reviewed by:

Sam Gunasekera

(Reviewer)

Appendix E – Investigation Criteria

1.1. Acceptable criteria for soil

The assessment criteria were adopted from residential soil investigation levels published in:

- Schedule B1 'Guideline on the Investigation Levels for Soil and Groundwater' of the National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPC, 1999 amended 2013); and
- CRC Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report No. 10: Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (2011).

The validation criteria adopted from these guidelines were drawn from the first reference, except as noted:

- Table 1A (1) Health-based Investigation Levels (HILs) for residential land uses (HIL B);
- Table 1A (3) Soil Health Screening levels (HSLs) for vapour intrusion for residential land uses (HSL A&B);
- Table B3 Soil Health Screening Levels for Vapour Intrusion (Intrusive Maintenance Worker shallow trench) (CRC CARE, 2011), depth 0m to <2m;
- Table B4 Soil Health Screening levels for Direct Contact (HSL-A&B and Intrusive Maintenance Worker) (CRC CARE, 2011);
- Table 1B (7) Management Limits for TPH Fractions F1 to F4 for fine soil;

The rationale for the selection of these guidelines is discussed in the following sections. The adopted validation criteria for this site are listed in Tables 4.1 to 4.7.

i. Human Health Criteria

For assessing contamination levels in soil in urban settings, the amended ASC NEPM presents health based investigation levels (HILs) and health screening levels (HSLs) for a range of exposure settings (e.g. industrial/commercial, residential, recreational etc).

The site is proposed to be relinquished for possible residential land use. Contaminant concentrations, excluding TRH, BTEX and naphthalene, will be assessed against the health investigation levels (HILs) applicable to "Residential" land use (HIL-A) from the amended ASC NEPM. TRH, BTEX and naphthalene concentrations will be assessed against the soil health screening levels (HSLs) for vapour intrusion from the relevant depth and soil matrix applicable to "Residential" land use (HSL-A) and from the amended ASC NEPM.

The HILs for heavy metals, PAHs and phenols in soils are summarised in Table 1.1.

Table 1.1:	Summary of Hea	Ith Investigation Levels

Analyte	HIL-B for Residential Land Use (mg/kg)
Arsenic (total)	500
Cadmium	150
Chromium (VI)	100
Copper	30,000
Lead	1,200
Mercury (inorganic)	120
Nickel	1,200

Zinc	760,000	
Carcinogenic PAHs (as B(a)P TEQ) ¹	4	
Total PAHs	400	

1. Health Investigation Level is based on eight carcinogenic PAHs and their Toxic Equivalent Factor (TEF) which represents their toxicity relative to benzo(a)pyrene. The TEQ is calculated by multiplying the concentrations of each carcinogenic PAH compound in the sample by its TEF.

The Residential HSLs (HSL A & B) for TRH, BTEX and naphthalene in soils are summarised in Table 1.2. Based on the consistency of shallow soils observed during the works, the HSLs for sandy soils have been adopted.

Chemical	HSL-A & B – Residential		HSL-B		
	(mg/kg)			(mg/kg)	
	Vapour Intrusion		Direct contact		
	(for sandy soils)				
	0m to <1m bgs	1m to <2m bgs	2m to <4m bgs	>4m bgs	
Toluene	160	220	310	540	21,000
Ethylbenzene	55	NL	NL	NL	5,900
Xylenes	40	60	95	170	17,000
Naphthalene	3	NL	NL	NL	2,200
Benzene	0.5	0.5	0.5	0.5	140
TRH C ₆ -C ₁₀ minus BTEX(F1)	45	70	110	200	5,600
TRH >C ₁₀ -C ₁₆ minus naphthalene (F2)	110	240	440	NL	4,200
TRH >C ₁₆ -C ₃₄	NA	NA	NA	NA	5,300
TRH >C ₃₄ -C ₄₀	NA	NA	NA	NA	8,100

Table 1.2: Summary of Residential Health Screening Levels in Soils

Notes:

NL: non-limiting (i.e. contaminant is not considered to pose a risk to human health through vapour inhalation regardless of concentration).

NA: not applicable because compounds are considered not to provide a complete exposure pathway due to low volatility.

The HSLs were first published by Friebel & Nadebaum (2011) and included HSLs for intrusive maintenance workers in a shallow (not more than 1.5m deep) trench (inhalation of volatile vapours) and for risks to maintenance workers from dermal contact with contaminated soils. These HSLs are not included in the amended ASC NEPM, however, the HSLs for these exposure scenarios have been adopted because they were derived for Australian conditions by appropriately qualified professionals using a reasonable scientific approach and were subject to independent peer review. A HSL Application Checklist is presented in Appendix D, the HSLs for sandy soils have been adopted, these are summarised in Table 1.3.

Chemical	HSL – Intrusive Maintenance Worker (mg/kg)	HSL - Intrusive Maintenance Worker (mg/kg)
	Vapour Intrusion (for sandy soils) 0m to <2m bgs	Direct Contact
Toluene	NL	120,000
Ethylbenzene	NL	85,000
Xylenes	NL	130,000
Naphthalene	NL	29,000
Benzene	77	1,100
TRH C ₆ -C ₁₀ minus BTEX(F1)	NL	82,000
TRH >C ₁₀ -C ₁₆ minus naphthalene (F2)	NL	62,000
TRH >C ₁₆ -C ₃₄	NA	85,000
TRH >C ₃₄ -C ₄₀	NA	120,000

Table 1.3: Summary of Intrusive Maintenance Worker Health Screening Levels in Soils

Notes:

NL: non-limiting (i.e. contaminant is not considered to pose a risk to human health through vapour inhalation regardless of concentration).

NA: not applicable because compounds are considered not to provide a complete exposure pathway due to low volatility.

Asbestos in soil samples, if identified, was assessed against the HSLs for asbestos contamination in soil presented in the amended NEPM applicable to "Residential" land use (HSL-B).

The HSLs for asbestos contamination in soil are summarised in Table 1.4.

Chemical	HSL (Commercial / Industrial) (w/w)
Bonded ACM	0.01%
FA and AF	0.001%
All forms of asbestos	No visible asbestos in surface soils

ACM: asbestos containing material FA: fibrous asbestos AF: asbestos fines

ii. Management limits

The purpose of the Management Limits is to "avoid or minimise" potential effects of petroleum hydrocarbons. Schedule B1 in the amended ASC NEPM provides these as an interim Tier 1 guidance to manage effects of:

• Formation of observable light non-aqueous phase liquid (LNAPL);

- Fire and explosive hazards; and
- Effects on buried infrastructure.

The application of the management limits requires the consideration of site-specific factors such as the depth of building services and depth to groundwater, to assess the maximum depth to which the limits should apply.

Management limits were derived by Canada-Wide Standard for Petroleum Hydrocarbons (CWS-PHC) in Soil (2008) where the lowest limiting value for each effect became the Recommended Management Limit. These recommended Management limits have been used as initial screening criteria to assess these potential risks where residual concentrations of TRH remain.

The Management Limits for TRH in coarse soils have been adopted, these are summarised in Table 4.7, below.

Table 1.7:	Management Limits for TRH in So	bil

Chemical	Management Limits (for coarse grained soils) (mg/kg)
TRH C_{6} - C_{10} – BTEX (F1)	700
TRH > C_{10} - C_{16} – naphthalene (F2)	1,000
TRH >C ₁₆ -C ₃₄ (F3)	2,500
TRH >C ₃₄ -C ₄₀ (F4)	10,000

1.1.1. Assessment of impact to groundwater from residual soil contamination

Whilst the adopted soil remediation criteria are considered appropriate for the mitigation of potential risks to human health and plants, residual concentrations of soil contamination below the soil remediation criteria have the potential to present an on-going source of impact to groundwater.

This issue has been addressed through assessment of groundwater quality after completion of soil remediation works.

1.2. Acceptance criteria for groundwater

To assess potential impacts to groundwater quality, investigation levels (ILs) are selected from published criteria for beneficial use of groundwater and potential environmental impact.

1.2.1. Assessment of environmental values

The NSW EPA Guidelines for the Assessment and Management of Groundwater Contamination (NSW DEC, 2007) describes the process to identify environmental values which must be considered in groundwater investigations at contaminated sites. Based on these guidelines, assessment of relevant environmental values requires that the consultant:

Determines whether the aquifer beneath the site is included in the NSW Office of Water list of major aquifers of drinking water quality;

Assesses the identified uses of groundwater from the aquifer; and

Use groundwater quality indicators to assess whether the aquifer is suitable for use as a possible drinking water resource. The NSW EPA has stated that, "Groundwater with total dissolved solids (TDS) concentrations below 2,000 mg/L is suitable for potential drinking water supply, and hence should be afforded this level of protection from contamination unless other site-specific factors, such as low yield, render such use unlikely." (DEC, 2007).

Based on these steps, Coffey identified that:

- The listed Water Sharing Plans do not include the area of the site. The site is not listed as situated in an Unincorporated Area Groundwater Management Area (GMU). This GMU is not considered to be part of the NSW Office of Water list of protected aquifers as an actual or potential drinking water supply (NSW DEC, 2007).
- The closest potential exposure point to groundwater contamination is considered to be Port Stephens located approximately 450m to the north of the site. Port Stephens supports marine water ecosystems and is used for recreational purposes.
- Electrical conductivity and TDS readings from onsite suggest groundwater is relatively fresh however due to the limited catchment area for recharge to the aquifer beneath the site and the readily available reticulated water in the area it is considered unlikely that groundwater beneath the site will be used for drinking water purposes.

Based on the above, Coffey consider that the principal receptor from groundwater beneath the site is the marine waters of Port Stephens. Consequently, environmental values for groundwater quality are for protection of Marine water aquatic species and recreational use.

1.2.2. Adopted groundwater acceptance criteria

Protection of Aquatic Ecosystems

Groundwater investigation levels are provided in Table 1C in Schedule B1 of the amended ASC NEPM. Where values are not listed in Table 1C, investigation levels presented in the ANZECC (2000) guidelines are considered applicable for ecological based values.

ANZECC (2000) advocates a site-specific approach to developing guideline trigger values based on such factors as local biological affects data, the current level of disturbance of the ecosystem etc. The guidelines present 'low risk guidelines trigger values' which are defined as concentrations of key performance parameters below which there is a low risk that adverse biological effects will occur. It is important to note that these are not threshold values at which an environmental problem is likely to occur if exceeded. Rather, if the trigger values are exceeded, then further action is required which may include either further site-specific investigations to assess whether or not there is an actual problem or management / remedial action.

Low risk trigger values are provided for the protection of 80-99% of species in marine water (presented in Table 3.4.1 of the guidelines), with the trigger value depending on the 'health' of the receiving waters.

It is considered that the marine water trigger values are applicable for investigating chemical concentrations in groundwater leaving the investigation area, as the receiving body (Port Stephens) is Marine.

NSW EPA's policy is that the trigger values for the protection of 95% of aquatic ecosystems should be used except where contaminants are potentially bioaccumulative in which case the trigger values for protection of 99% of species should be used. Therefore, we have selected trigger values for protection of 95% of marine water species for the majority of contaminants, and 99% of marine water species for bioaccumulative contaminants for initial comparison purposes.

ANZECC (2000) states that there is currently insufficient data to derive high reliability trigger values for various contaminants. For these contaminants, low reliability trigger values have been adopted.

ANZECC (2000) state that there is currently insufficient data to derive a high reliability or low reliability trigger value for TPH. It is understood that the position of NSW EPA is that there should be no phase separate hydrocarbon on the groundwater and that the aromatic component (BTEX and VOC) concentrations should be at concentrations less than the respective ANZECC (2000) trigger values in the receiving waters relevant to the site.

Land Use – Human Health

For protection of human health, TRH, BTEX and naphthalene concentrations will also be screened against the Groundwater HSLs for potential vapour intrusion from the relevant depth and soil matrix applicable to "Low-high Density Residential" land use (HSL A) from the amended ASC NEPM.

The HSLs for TRH, BTEX and naphthalene in groundwater are summarised in Table 4.9. Based on the in-situ natural subsurface conditions, the HSLs for sandy soils have been adopted.

Chemical	HSL A & B – Residential (for sandy soils, 2mbgs)
	(µg/L)
Toluene	NL
Ethylbenzene	NL
Xylenes	NL
Naphthalene	NL
Benzene	780
TRH C ₆ -C ₁₀ – BTEX (F1)	980
TRH >C ₁₀ -C ₁₆ – naphthalene (F2)	1,100

Table 1.9: Summary of HSLs for Residential in Groundwater

NL: non-limiting where PSH is absent (i.e. contaminant is not considered to pose a risk to human health).

The HSLs for intrusive maintenance workers in a shallow (not more than 1.5m deep) trench (inhalation of volatile vapours). has also been adopted. An HSL Application Checklist is presented in Appendix D. Where PSH is absent, concentrations for BTEX, naphthalene, and F1 and F2 TRH fractions in groundwater (greater than 2m depth) are not limiting in sandy soils as the contaminants are considered not to pose a risk to human health of intrusive maintenance workers via vapour inhalation.

1.3. Aesthetic criteria

As well as potential human health and ecosystem risks posed by residual contamination, the aesthetic quality of soil and groundwater was also considered when selecting acceptance criteria for the site.

Currently, criteria for aesthetics with regard to soil and / or groundwater contamination are subjective and are generally limited to soil odour, texture (grease, cementation) and appearance (staining or other abnormal coloration) and presence of foreign materials. The Guidelines for the NSW Site Auditor Scheme (2nd edition) (DECC, 2006) state that for residential sites with gardens and accessible soil, Auditors must check that "aesthetic issues have been considered in the assessment of contamination, including the generation of odours from the site and any discolouration of the soil as a result of contamination".

Furthermore, Section 3.6 of Schedule B1 of the amended ASC NEPM provides guidance on assessment of aesthetics and states that the following characteristics or presentations are examples of where site assessment may not have detected chemical contamination above investigation or screening levels but where further assessment would be required:

highly malodorous soils or extracted groundwater (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in soil or extracted groundwater, organosulfur compounds);

hydrocarbon sheen on surface water;

discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature;

large monolithic deposits of otherwise low-risk material, e.g. gypsum as powder or plasterboard, cement kiln dust;

presence of putrescible refuse including material that may generate hazardous levels of methane such as a deep-fill profile of green waste or large quantities of timber waste; and / or

soils containing residue from animal burial (e.g. former abattoir sites).

The approach used by Coffey is to ask what a reasonable person who is a future owner or occupier of the land would expect. Aesthetic qualities of soil include colour, consistency, similarity to surrounding natural soil, odour, sheen and inclusion of foreign objects. Aesthetic qualities of groundwater include colour, turbidity, odour and sheen.

While aesthetic observations are subjective, Coffey considers that discolouration, offensive odour from the soil or if there are obvious components of waste such as building rubble, slag, bagged waste or similar, has potential for aesthetic impairment and further assessment and / or consideration may be warranted. The proposed remediation standard and whether an aesthetic concern is reasonably likely to impact future use of the land must also be considered.

Coffey has applied the following criteria with regard to the potential for aesthetic issues and assessment of the suitability of soils for reuse onsite with regards to aesthetics:

Foundations would be reasonably expected to be constructed in the upper 1-1.5m of the soil profile (below original or likely proposed ground surface). No offensive odour should be present in the soil in the upper 1.5m. Odours associated with contamination (e.g. petrol, diesel, solvent odours) should not be apparent in a newly cut trench, surface scrape or from the ground surface, in soils forming the upper 1.5m below ground surface. PID readings in ambient air below detection limit, in conjunction with olfactory assessment by the Coffey site supervisor, will also be used to confirm the absence of odours where volatile contamination such as petrol was present in soils prior to remediation.

Appendix F – Details of soil, groundwater and soil vapour sampling procedures

1.1. Soil sampling methodology

The soil sampling methodology is summarised in Table 1.1

Table 1.1: Soil Sampling Methodology		
Activity	Detail / Comments	
Soil Sampling	Sampling was carried out in general accordance with the Coffey's SOPs which are based on current industry practice and relevant guidelines and Australian standards. Soil validation samples were collected using either the hand auger, the auger of the drill rig or directly by hand. Samples collected using the hand auger were collected as hand grab samples from the middle of the auger to reduce the potential for cross-contamination from soil adhered to the walls of the auger. Disposable nitrile gloves were changed between each soil sample collected to eliminate cross-contamination.	
Decontamination of sampling equipment	For sampling where a hand auger was used, the equipment was decontaminated between locations using a phosphate-free detergent and potable water.	
Soil Screening	Soils were assessed for potential aesthetic impacts (staining and/or odours) at sampling locations and at depths where deemed necessary. Sample headspace was screened for volatile contaminants by placing a portion of sample inside a zip-lock plastic bag and screening with a Photoionisation Detector (PID) which was calibrated daily with 100ppm isobutylene calibration gas.	
Sample Handling and Transportation	Sample storage and transport were consistent with Coffey's SOP. Samples were immediately placed into laboratory supplied glass jars with Teflon lined seal to minimise volatile loss and placed into an esky containing ice. Samples were dispatched to NATA accredited laboratories (Eurofins MGT as the primary laboratory and ALS as the secondary laboratory) under chain of custody control (COC records are provided in Appendix C).	
	Samples were sent to the primary laboratory via courier. The ice in the eskies was replenished to ensure the samples remained chilled prior to arrival at the laboratory. Triplicate samples were generally transported from the primary laboratory to the secondary laboratory using registered couriers, under chain of custody control.	
Soil Laboratory Analysis	 Soil samples were scheduled for laboratory analysis in general accordance with the RAP and COPCs for the site, as summarised below: Samples (fill material) – heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn), total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), phenols, organochlorine pesticides (OCP), polychlorinated biphenyls (PCBs), total organic carbon (TOC), asbestos, electro-conductivity (EC), pH and/or cation exchange capacity (CEC). 	

1.2. Groundwater sampling methodology

The groundwater monitoring methodology for the post-remediation Groundwater Monitoring Events (GMEs) was generally consistent with Coffey's SOPs for groundwater monitoring well gauging and groundwater sampling and is summarised in Table 1.2.

Activity	Detail / Comments
Well Gauging	Monitoring wells were gauged using an oil/water interface probe (IP) with depth to water measured from top of well casing. Well gauging results are presented in Table 6.
Well Purging	 Groundwater was removed from each groundwater monitoring well using a bailer. Measurement of water quality parameters was conducted using a water quality meter. Purging continued until the groundwater monitoring well produced water which was representative of formation water, as indicated by three consecutive readings meeting the following stabilisation criteria: +/- 10 % Dissolved Oxygen (DO) +/- 0.2 °C Temperature +/- 10 mV Redox Potential +/- 3 % Electrical Conductivity (specific conductance) +/- 0.1 unit for pH. Field purging data is summarised in Table 6 attached.
Sampling Method	Groundwater sampling was conducted following the stabilisation of groundwater parameters or until the well became dry. A bailer was used to obtain groundwater samples. Sample collection, storage and transport were conducted according to Coffey SOP.
Decontamination Procedure	Water sampling equipment (i.e. IP and water quality meter) was decontaminated with a solution of approximately 5% laboratory grade detergent (Decon90) in water and rinsed with deionised water between wells.
Sample Handling and Transportation	Sample storage and transport complied with Coffey's SOP. Samples were placed in laboratory supplied bottles with appropriate preservatives and zero headspace for samples for volatiles analysis. Sample containers were immediately capped and placed in an esky with ice. The samples were dispatched to NATA accredited laboratories (Eurofins MGT) as the primary laboratory and ALS as the secondary laboratory) under chain of custody control for which records are provided in Appendix R. Triplicate samples were transported from the primary laboratory to the secondary laboratory using registered couriers, under chain of custody conditions.
Groundwater Laboratory Analysis	Groundwater samples were scheduled for laboratory analysis for one or more of the following COPCs: heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn), total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), phenols, organochlorine pesticides (OCP), polychlorinated biphenyls (PCBs).

Table 1.2: Groundwater Monitoring Methodology

1.3. Soil vapour sampling methodology

The soil vapour monitoring methodology was consistent with Coffey's SOPs for soil vapour monitoring and the protocols described in the CRC-Care Technical Report no. 23 '*Petroleum Hydrocarbon Vapour Intrusion Assessment: Australian Guidance*' (Wright, 2013). The methodology is summarised in Table 1.3 below.

Activity	Detail / Comments
Soil vapour bore construction	 The sub-slab soil-vapour pins were installed as follows. The sub-slab soil-vapour pins were installed using through the concrete salb using a drill rig. The soil-vapour sample implant, which consists of a perforated stainless tube attached to ¼-inch Teflon tubing, was positioned at the base of the slab. The Teflon tubing connects the soil-vapour implant to the surface. The non-permeability of the seal around the sub-slab vapour pin was tested using water. The Teflon tubing was capped at the surface to prevent air exchange sub-slab soil-vapour pins.
Equilibration time	The sub-slab soil-vapour pins were installed on 15 May 2015. Given the minimum intrusion into the sub-slab material during the installation, the volume of air introduced into the vadose zone around the soil vapour pin by the drilling method and the installation process was considered to be minimal.
Purging	A minimum volume of 6 L of air was purged from each location. This volume was estimated to be equal or greater than three times the dead space of the Teflon tubing, soil vapour probe and sampling equipment and surroundings of the soil vapour pin was purged from each location prior to sampling.
Sample collection media	Sample collection was conducted using a 1L Restek Silcocan®. Each canister was cleaned, individually certified and evacuated by the supplying laboratory (ALS). The canisters are individually numbered with a unique identifier and are sealed with a diaphragm valve and quick-connect valve. The canisters are considered to be appropriate for the collection of volatile organic compounds (VOCs) by the TOX-15 methodology.
Associated equipment	Each canister was supplied with a cleaned soil gas 'sampling train' which consisted of a flow restrictor to limit the sampling rate, a vacuum gauge to monitor the vacuum within the canister and a fitting to attach to the soil vapour bore. The flow restrictors were set to enable a flow rate of approximately 150mL/min. The soil gas sampling trains were all Siltek® treated and are considered to be appropriate for the collection of volatile organic compounds (VOCs) by the TOX-15 methodology.
Shut-in test	Prior to the collection of samples, the canisters were connected to the soil gas sampling train and the valves were opened, allowing the vacuum to equalise between the canister and the sampling train. After a short period the valves were closed and the vacuum was monitored in the sampling train for a period of two minutes to ensure no leaks were present. Canisters with a vacuum of less than 26 in.Hg were also considered to have leaked in transport and were not used.
Soil vapour collection	After the shut-in test was complete, the valves were re-opened to the sampling train and the initial canister vacuum was recorded on the field log sheet. The sampling

Table 1.3: Soil Vapour Monitoring Methodology

	train was then connected to the soil vapour bore and sample collection commenced. Sample collection was stopped when the canister vacuum reached a vacuum of 5 in.Hg (approximately 10 minutes). The final vacuum was recorded on the field log sheet and the canister valve was closed and disconnected from the sampling train. Duplicate samples were collected in series.
Leak testing	To assess for potential leaks in the installation of the sub-slab soil vapour pin, the set up was tested with water following the recommended procedure.
Laboratory Analysis	 The soil vapour samples were analysed for: Volatile Organic Compounds (VOCs) including BTEX compounds; NEPM TPHs; and Chlorinated hydrocarbons.

Appendix G – Field Calibration Documentation

t

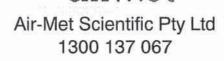
RENTALS

Equipment Report - MINIRAE 3000 PID

This PID has been performan	nce checked / calibrated	1* as follows:			
Calibration	Actual Value	Reading	Pass?		
Zero – fresh air	0.0 ppm	0,0 ppm	I	-	
Span – Isobutylene	100 ppm	100.2 ppm	Y		
Set Alarm limits to	High	100 ppm	Low	50 ppm	
Operations Check					
Performance Check (p	oump, lamp, sensor & ba	attery voltage chec	k)		
Battery Charged	Filters Check Spare battery Voltage (5.5v minimum) 6 V				
Electrical Safety Tag a	attached (AS/NZS Ta	ag No: 10900	7	Valid to: 12/06/20	15
Bump test / Date	01/06/201	5			
* Calibration gas traceability inform	ation is available upon reque	st.			
Date:0//0	6/2015 cr	necked by:	MI	ENKO	
Signed:		A			
Please check that the follow return. A minimum \$20 clea	ving items are received aning / service / repair c	and that all items a harge may be app	re cleaned a lied to any ur	nd decontaminated before nclean or damaged items	re s.

Items not returned will be billed for at the full replacement cost.

Sent Returned	Item MiniRae 3000 PID / Operational Check, plus Battery Voltage @ 100% / Lamp Voltage @ 11.7eV Compound Set to: 1908 U.Y.LeaveC./factor: Protective yellow rubber boot Inlet probe (attached to PID) Spare water trap filter(s) Qty Charger 240V to 12V 500mA Instruction Manual behind foam on the lid of case " Quick Guide Sheet behind foam on the lid of case " Spare Alkaline Battery Compartment with batteries Inline Moisture trap Filter Guide Laminated Calibration regulator & tubing (optional) Carry Case Check to confirm electrical safety (tag must be valid)
Processors Signature/ In	


eturn	Condition on return	02726	Quote Reference
			Customer Ref
	>	5000-23	Equipment ID
	-	914222	Equipment serial no.
1		1 1	Return Date
			Return Time

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free	e Call) 1300 735 295	Fax: (Free Call) 1800 675	Brisbane Branch	mail: RentalsAU@Thermofisher.com
elbourne Branch Caribbean Drive,	Sydney Branch Level 1, 4 Tatavera Road, North Ryde 2113	Adeialde Branch 27 Baulah Road, Norwood, South Australia 5067	Unit 2/5 Ross St Newstead 4006	121 Beringarra Ave Mataga WA 6090 G0555
Issue 5	Hotarityde 2110	Sep 11		G0555

Instrument Geotech Interface Meter (30M) Serial No. 3909

Item	Test	Pass	Comments
Battery	Compartment	1	
	Capacity	1	
Probe	Cleaned/Decon.	1	
	Operation	1	
Connectors	Condition	1	
		1	
Tape Check	Cleaned	1	
Connectors	Checked for cuts	1	
	and the second second second second second second second second second second second second second second second		
			*
Instrument Test	At surface level	✓	
······································			

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by: Joanna Wong Calibration date: 28/05/2015

Next calibration due:

27/07/2015

RENTALS

Equipment Certification Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Span 1	Span 2	Traceability Lot #	Pass?
рĤ	pH 4.00 / pH 7.00	4.00 pH	7.00 pH	1	-
Conductivity	12.88 mS/cm	0.JO mS/cm	12.88 mS/cm		Ø
TDS	36 ppk	0-0 ppk	36.0 ppk		Ø
Dissolved Oxygen	Sodium Sulphite / Air	0 - 00 ppm in Sodium Sulphite	Saturation in Air		đ
Turbidity	360 NTU	O NTU	360 NTU	8	
Redox (ORP)	** 121	Electrode operab	ility test 240mV +/- 10%	5. Actual: 234 mV	

Battery Status 7.4 (min 7.2V) Electrical Safety Tag attached (AS/NZS 3760)

Temperature <u>10</u> °C Electrodes Cleaned and checked

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Set বিবিব্যম্যায় প্ৰথমিয় সময় বিশ্বমায় সময় সময় সময় সময় সময় সময় সময় সম	Returned	Item 90FLMV Unit. Ops check/Battery status: pH sensor with wetting cap, 5m Conductivity/TDS/Temperature K=10 sensor, 5m Dissolved oxygen YSI5739 sensor with wetting cap, 5m Turbidity sensor, 5m Power supply 240V to 12V DC 200mA Instruction Manual Quick Guide Syringe with storage solution for pH and ORP sensors Carry Case Check to confirm electrical safety (tag must be valid)
	12/00/2	

Date:

Signad:

igned.	1591	
TFS Reference	CS002951	Return Date: / /
Customer Reference		Return Time:
Equipment ID	90FLTS'L	Condition on return:
Equipment Serial No.	U8624	

"We do more than give you great equipment ... We give you great solutions!"

Mallourne Branch Sydney Branch Adalado Branch Brisbane Branch Perth Branch Scarbbern Drive, Scarbbern Level 1, 4 Talavera Road, North Ryde 2113 27 Beulah Road, Norwood, South Australia 5067 Brisbane Branch Perth Branch Newstead 4006 Newstead 4006 Malaga WA 6090 Malaga WA 6090 Malaga WA 6090	om	ail: RentalsAU@Thermofisher.com	Email:	Fax: (Free Call) 1800 675 123	Call) 1300 735 295	Phone: (Free
		121 Beringarra Ave	Unit 2/5 Ross St	27 Beulah Road, Norwood,	Level 1, 4 Talavera Road,	5 Caribbean Drive,
Issue 7 Jan 15	564	G0564		Jan 15		Issue 7

RENTALS

Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Span 1	Span 2	Traceability Lot #	Pass?
pН	7.00H / pH 4.00	7.000 pH	4.00 pH	1	g
Conductivity	12.88 mS/cm	o.oo mS/cm	12.88 mS/cm		Ø
TDS	36 ppk	0-0 ppk	36.0 ppk		Ø
Dissolved Oxygen	Sodium Sulphite / Air	in Sodium Sulphite	9.03 ppm Saturation in Air		

Check only

Redox Electrode 240r (ORP) * operability test +/- 1	mV 229 mV E
---	-------------

* This meter uses an Ag/AgCI ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode), add 199mV to the mV reading.

.41 Battery Status (min 7.2V) Electrical Safety Tag attached (AS/NZS 3760) Tag No: 109003 Valid to: 12/06/14 201 061 Date: Signed: 5

20 °C Temperature ____ Electrodes Cleaned and checked

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	Item
Ø		90FLMV Unit. Ops check/Battery status:
0		pH sensor with wetting cap, 5m
9		Conductivity/TDS/Temperature K=10 sensor, 5m
1		Dissolved oxygen YSI5739 sensor with wetting cap, 5m
Ø,		Redox (ORP) sensor with wetting cap, 5m
e,		Power supply 240V to 12V DC 200mA
		Instruction Manual
2		Quick Guide
E,		Plastic container with storage solution for pH and ORP sensors
E/		Carry Case
		Check to confirm electrical safety (tag must be valid)

06/2015 Date: Signed: _

TFS Reference	05002726	Return Date: / /
Customer Reference		Return Time:
Equipment ID	90FLMVS	Condition on return:
Equipment Serial No.	51649	

	"We do more than	give you great equipment We gi	ve you great s	olutions!"
Phone: (Free Call) 1	300 735 295	Fax: (Free Call) 1800 675 123		Email: RentalsAU@Thermofisher.com
Melbourne Branch 5 Caribbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4005	Perth Branch 121 Beingarra Ave Malaga WA 6090